mongodb 文档的嵌入和引用
mongodb 是介于关系型与非关系型数据之间的,mongodb的join查询可以通过引用来实现。可以将文档内容嵌入到另一个文档中,也可以将文档内容引用到另一个文档中。嵌入意味着要把某一类型的数据,如包含更多数据的数组,嵌入到文档本身。引用意味着创建一个引用
mongodb 是介于关系型与非关系型数据之间的,mongodb的join查询可以通过引用来实现。 可以将文档内容嵌入到另一个文档中,也可以将文档内容引用到另一个文档中。 嵌入意味着要把某一类型的数据,如包含更多数据的数组,嵌入到文档本身。 引用意味着创建一个引用,包含另一个文档的数据。相当于关系型数据库。 一. 嵌入 例如:我想使用一个关系型数据库来记录CD、DVD和购买信息。在这个数据中,需要一个表来收集CD,另一个表来存储CD歌曲信息。因此,如果要查询特定的信息就可能需要查询多个表的。 对于mongodb 或者其他非关系型数据库,会更容易的嵌入这些信息,采用这种方法会使数据库简洁,确保所有相关信息保存在单一的文档中,同时,检索数据更快。 数据结构如下: 关系型|_media |_cds |_id, artist, title, genre, releasedate |_ cd_tracklists |_cd_id, songtitle, length
|_media |_items |_
[ { "_id" : ObjectId("5353463193efef02c962da73"), "Type" : "CD", "Artist" : "Nirvana", "Title" : "Nevermind", "Tracklist" : [ { "Track" : "1", "Title" : "Smells like teen spirit", "Length" : "5:02" }, { "Track" : "2", "Title" : "In Bloom", "Length" : "4:15" } ] } ]
> use ttlsa_com switched to db ttlsa_com > apress = ( { "_id" : "Apress", "Type" : "Technical Publisher", "Category" : ["IT", "Software","Programming"] } ) { "_id" : "Apress", "Type" : "Technical Publisher", "Category" : [ "IT", "Software", "Programming" ] } > db.publisherscollection.insert(apress)
> book = ( { "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress","Author" : ["Membrey,Peter","Plugge, Eelco","Hawkins, Tim"] } ) { "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Author" : [ "Membrey,Peter", "Plugge, Eelco", "Hawkins, Tim" ] } > db.mediaCollection.insert(book)
> book = db.mediaCollection.findOne({"ISBN" : "987-1-4302-3051-9"}) { "Author" : [ "Hawkins, Tim", "Plugge, Eelco" ], "ISBN" : "987-1-4302-3051-9", "Publisher" : "Apress", "Title" : " Different Title 2", "Type" : "Book", "_id" : ObjectId("5353462f93efef02c962da71") } > book.Publisher Apress > db.publisherscollection.findOne( { _id : book.Publisher } ) { "_id" : "Apress", "Type" : "Technical Publisher", "Category" : [ "IT", "Software", "Programming" ] }
> apress = ( { "Type" : "Technical Publisher", "Category" :["IT","Software","Programming"] } ) { "Type" : "Technical Publisher", "Category" : [ "IT", "Software", "Programming" ] } > db.publisherscollection.save(apress) > apress { "Type" : "Technical Publisher", "Category" : [ "IT", "Software", "Programming" ], "_id" : ObjectId("53588c221697e7511678752c") } > book = { "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Author": ["Membrey, Peter","Plugge,Eelco","Hawkins, Tim"], Publisher : [ new DBRef ('publisherscollection',apress._id) ] } { "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Author" : [ "Membrey, Peter", "Plugge,Eelco", "Hawkins, Tim" ], "Publisher" : [ DBRef("publisherscollection", ObjectId("53588c221697e7511678752c")) ] } > db.media.save(book) > db.media.find().toArray() [ { "_id" : ObjectId("53588ce01697e7511678752d"), "Type" : "Book", "Title" : "Definitive Guide to MongoDB, the", "ISBN" : "987-1-4302-3051-9", "Author" : [ "Membrey, Peter", "Plugge,Eelco", "Hawkins, Tim" ], "Publisher" : [ DBRef("publisherscollection", ObjectId("53588c221697e7511678752c")) ] } ]
原文地址:mongodb 文档的嵌入和引用, 感谢原作者分享。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to use Go framework documentation? Determine the document type: official website, GitHub repository, third-party resource. Understand the documentation structure: getting started, in-depth tutorials, reference manuals. Locate the information as needed: Use the organizational structure or the search function. Understand terms and concepts: Read carefully and understand new terms and concepts. Practical case: Use Beego to create a simple web server. Other Go framework documentation: Gin, Echo, Buffalo, Fiber.

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys

When developing an e-commerce website, I encountered a difficult problem: how to provide users with personalized product recommendations. Initially, I tried some simple recommendation algorithms, but the results were not ideal, and user satisfaction was also affected. In order to improve the accuracy and efficiency of the recommendation system, I decided to adopt a more professional solution. Finally, I installed andres-montanez/recommendations-bundle through Composer, which not only solved my problem, but also greatly improved the performance of the recommendation system. You can learn composer through the following address:

This article describes how to build a highly available MongoDB database on a Debian system. We will explore multiple ways to ensure data security and services continue to operate. Key strategy: ReplicaSet: ReplicaSet: Use replicasets to achieve data redundancy and automatic failover. When a master node fails, the replica set will automatically elect a new master node to ensure the continuous availability of the service. Data backup and recovery: Regularly use the mongodump command to backup the database and formulate effective recovery strategies to deal with the risk of data loss. Monitoring and Alarms: Deploy monitoring tools (such as Prometheus, Grafana) to monitor the running status of MongoDB in real time, and

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

For advanced Java developers, the official documentation (SpringBoot, Hibernate, etc.) provides comprehensive information, including API reference and best practices. Technical tutorial platforms (DZone, Baeldung, etc.) cover advanced features, design patterns, and code extensibility. Open source projects (GitHub, Maven, etc.) showcase real-world implementations to learn best practices and seek community support.

Detailed explanation of MongoDB efficient backup strategy under CentOS system This article will introduce in detail the various strategies for implementing MongoDB backup on CentOS system to ensure data security and business continuity. We will cover manual backups, timed backups, automated script backups, and backup methods in Docker container environments, and provide best practices for backup file management. Manual backup: Use the mongodump command to perform manual full backup, for example: mongodump-hlocalhost:27017-u username-p password-d database name-o/backup directory This command will export the data and metadata of the specified database to the specified backup directory.

GitLab Database Deployment Guide on CentOS System Selecting the right database is a key step in successfully deploying GitLab. GitLab is compatible with a variety of databases, including MySQL, PostgreSQL, and MongoDB. This article will explain in detail how to select and configure these databases. Database selection recommendation MySQL: a widely used relational database management system (RDBMS), with stable performance and suitable for most GitLab deployment scenarios. PostgreSQL: Powerful open source RDBMS, supports complex queries and advanced features, suitable for handling large data sets. MongoDB: Popular NoSQL database, good at handling sea
