redis 数据结构综述
这里所说的数据结构是针对 redis 内部存储 key-value 的,其他诸如 redis 配置相关的数据结构,不在此篇讨论范围。 一览 redis 数据结构 dict ,哈希表,redis 所有的 key-value 都存储在里面。 // 哈希表(字典)数据结构,redis 的所有键值对都会存储在这
这里所说的数据结构是针对 redis 内部存储 key-value 的,其他诸如 redis 配置相关的数据结构,不在此篇讨论范围。
一览 redis 数据结构
dict,哈希表,redis 所有的 key-value 都存储在里面。
// 哈希表(字典)数据结构,redis 的所有键值对都会存储在这里。其中包含两个哈希表。 typedef struct dict { // 哈希表的类型,包括哈希函数,比较函数,键值的内存释放函数 dictType *type; // 存储一些额外的数据 void *privdata; // 两个哈希表 dictht ht[2]; // 哈希表重置下标,指定的是哈希数组的数组下标 int rehashidx; /* rehashing not in progress if rehashidx == -1 */ // 绑定到哈希表的迭代器个数 int iterators; /* number of iterators currently running */ } dict;
redisObject,任何 value 都会被包装成一个 redisObject,redisObject 能指定 value 的类型,编码方式等数据属性。
typedef struct redisObject { // 刚刚好 32 bits // 对象的类型,字符串/列表/集合/哈希表 unsigned type:4; // 未使用的两个位 unsigned notused:2; /* Not used */ // 编码的方式,redis 为了节省空间,提供多种方式来保存一个数据 // 譬如:“123456789” 会被存储为整数 123456789 unsigned encoding:4; // 当内存紧张,淘汰数据的时候用到 unsigned lru:22; /* lru time (relative to server.lruclock) */ // 引用计数 int refcount; // 数据指针 void *ptr; } robj;
zset,是一个跳表,插入删除速度非常快。
typedef struct zset { // 哈希表 dict *dict; // 跳表 zskiplist *zsl; } zset;
adlist,普通的双链表。
typedef struct list { // 头指针 listNode *head; // 尾指针 listNode *tail; // 数据拷贝函数指针 void *(*dup)(void *ptr); // 析构函数指针 void (*free)(void *ptr); // 数据比较指针 int (*match)(void *ptr, void *key); // 链表长度 unsigned long len; } list;
ziplist,是一个压缩的双链表,实现了针对 CPU cache 的优化。ziplist 实际上一个字符串,通过一系列的算法来实现压缩双链表。
intset,整数集合。
typedef struct intset { // 每个整数的类型 uint32_t encoding; // intset 长度 uint32_t length; // 整数数组 int8_t contents[]; } intset;
sds,字符串数据结构,因为经常涉及字符串的操作,redis 做了特殊的实现,文档中将其称为 Hacking String.
typedef char *sds;
zipmap,已经被废弃,我不会讨论这个数据结构。
redis 命令和相关的数据结构
以添加数据的一类命令 SET,HSET,LPUSH,SADD,ZADD 为例,分别看看哪个命令底层用了哪些数据结构。
SET 命令底层所使用的即为 sds,或者整型数据类型 int,long long 等,或者浮点型 float,double。不同的情况所使用的数据类不同,SET 底层所使用的数据类型是最为简单的。
HSET 命令底层所使用的即为压缩双链表 ziplist,而非哈希表 dict。
LPUSH 命令底层所使用的即为压缩双链表 ziplist。
SADD 命令情况较为特殊,SADD 所面向的是一个集合(set)。如果往集合总添加的数据都是整数,会采用整数集合 intset;如果集合中的数据有一个不为整数,会采用哈希表 dict。因此,会一个特殊的情况,假使前 N个数据都为整数,第 N+1个数据为非整数,如字符串,那么数据结构会从 intset 转换为 dict。
ZADD 也较为特殊,SADD 所面向的是一个有序集合(sorted set)。ZADD 底层数据结构可以采用跳表 skiplist 和哈希表 dict 的结合;也可以采用 ziplist。具体选用哪种需要看 server.zset_max_ziplist_entries 和 server.zset_max_ziplist_value 两个配置变量的设置。前者掺合 dict 是为了能快速查找某个成员是否存在于跳表中。有序集一个较为普遍的应用是排行榜。
我将在接下来的系列文章中一一讲解每一个数据结构,以及选用相应数据结构的目的。
捣乱 2014-6-9
http://daoluan.net
原文地址:redis 数据结构综述, 感谢原作者分享。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.
