Home Database Mysql Tutorial Efficient Indexing in MongoDB 2.6

Efficient Indexing in MongoDB 2.6

Jun 07, 2016 pm 04:35 PM
mongodb

By Osmar Olivo, Product Manager at MongoDB One of the most powerful features of MongoDB is its rich indexing functionality. Users can specify secondary indexes on any field, compound indexes, geospatial, text, sparse, TTL, and others. Havi

By Osmar Olivo, Product Manager at MongoDB

One of the most powerful features of MongoDB is its rich indexing functionality. Users can specify secondary indexes on any field, compound indexes, geospatial, text, sparse, TTL, and others. Having extensive indexing functionality makes it easier for developers to build apps that provide rich functionality and low latency.

MongoDB 2.6 introduces a new query planner, including the ability to perform index intersection. Prior to 2.6 the query planner could only make use of a single index for most queries. That meant that if you wanted to query on multiple fields together, you needed to create a compound index. It also meant that if there were several different combinations of fields you wanted to query on, you might need several different compound indexes.

Each index adds overhead to your deployment - indexes consume space, on disk and in RAM, and indexes are maintained during updates, which adds disk IO. In other words, indexes improve the efficiency of many operations, but they also come at a cost. For many applications, index intersection will allow users to reduce the number of indexes they need while still providing rich features and low latency.

In the following sections we will take a deep dive into index intersection and how it can be applied to applications.

An Example - The Phone Book

Let’s take the example of a phone book with the following schema.

{
    FirstName
    LastName
    Phone_Number
    Address
}
Copy after login

If I were to search for “Smith, John” how would I index the following query to be as efficient as possible?

db.phonebook.find({ FirstName : “John”, LastName : “Smith” })
Copy after login

I could use an individual index on FirstName and search for all of the “Johns”.

This would look something like ensureIndex( { FirstName : 1 } )

We run this query and we get back 200,000 John Smiths. Looking at the explain() output below however, we see that we scanned 1,000,000 “Johns” in the process of finding 200,000 “John Smiths”.

> db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor FirstName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 1000000,
    "nscanned" : 1000000,
    "nscannedObjectsAllPlans" : 1000101,
    "nscannedAllPlans" : 1000101,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 2,
    "nChunkSkips" : 0,
    "millis" : 2043,
    "indexBounds" : {
        "FirstName" : [
            [
                "John",
                "John"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Copy after login

How about creating an individual index on LastName?

This would look something like ensureIndex( { LastName : 1 } )

Running this query we get back 200,000 “John Smiths” but our explain output says that we now scanned 400,000 “Smiths”. How can we make this better?

db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor LastName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 400000,
    "nscanned" : 400000,
    "nscannedObjectsAllPlans" : 400101,
    "nscannedAllPlans" : 400101,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 1,
    "nChunkSkips" : 0,
    "millis" : 852,
    "indexBounds" : {
        "LastName" : [
            [
                "Smith",
                "Smith"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Copy after login

So we know that there are 1,000,000 “John” entries, 400,000 “Smith” entries, and 200,000 “John Smith” entries in our phonebook. Is there a way that we can scan just the 200,000 we need?

In the case of a phone book this is somewhat simple; since we know that we want it to be sorted by Lastname, Firstname we can create a compound index on them, like the below.

ensureIndex( {  LastName : true, FirstName : 1  } ) 
db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor LastName_1_FirstName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 200000,
    "nscanned" : 200000,
    "nscannedObjectsAllPlans" : 200000,
    "nscannedAllPlans" : 200000,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 0,
    "nChunkSkips" : 0,
    "millis" : 370,
    "indexBounds" : {
        "LastName" : [
            [
                "Smith",
                "Smith"
            ]
        ],
        "FirstName" : [
            [
                "John",
                "John"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Copy after login

Looking at the explain on this, we see that the index only scanned the 200,000 documents that matched, so we got a perfect hit.

Beyond Compound Indexes

The compound index is a great solution in the case of a phonebook in which we always know how we are going to be querying our data. Now what if we have an application in which users can arbitrarily query for different fields together? We can’t possibly create a compound index for every possible combination because of the overhead imposed by indexes, as we discussed above, and because MongoDB limits you to 64 indexes per collection. Index intersection can really help.

Imagine the case of a medical application which doctors use to filter through patients. At a high level, omitting several details, a basic schema may look something like the below.

{
      Fname
      LName
      SSN
      Age
      Blood_Type
      Conditions : [] 
      Medications : [ ]
      ...
      ...
}
Copy after login

Some sample searches that a doctor/nurse may run on this system would look something like the below.

Find me a Patient with Blood_Type = O under the age of 50

db.patients.find( {   Blood_Type : “O”,  Age : {   $lt : 50  }     } )
Copy after login
Copy after login

Find me all patients over the age of 60 on Medication X

db.patients.find( { Medications : “X” , Age : { $gt : 60} })
Copy after login

Find me all Diabetic patients on medication Y

db.patients.find( { Conditions : “Diabetes”, Medications : “Y” } )
Copy after login

With all of the unstructured data in modern applications, along with the desire to be able to search for things as needed in an ad-hoc way, it can become very difficult to predict usage patterns. Since we can’t possibly create compound indexes for every combination of fields, because we don’t necessarily know what those will be ahead of time, we can try indexing individual fields to try to salvage some performance. But as shown above in our phone book application, this can lead to performance issues in which we pull documents into memory that are not matches.

To avoid the paging of unnecessary data, the new index intersection feature in 2.6 increases the overall efficiency of these types of ad-hoc queries by processing the indexes involved individually and then intersecting the result set to find the matching documents. This means you only pull the final matching documents into memory and everything else is processed using the indexes. This processing will utilize more CPU, but should greatly reduce the amount of IO done for queries where all of the data is not in memory as well as allow you to utilize your memory more efficiently.

For example, looking at the earlier example:

db.patients.find( {   Blood_Type : “O”,  Age : {   $lt : 50  }     } )
Copy after login
Copy after login

It is inefficient to find all patients with BloodType: O (which could be millions) and then pull into memory each document to find the ones with age

Instead, the query planner finds all patients with bloodType: O using the index on BloodType, and all patients with age

Index intersection allows for much more efficient use of existing RAM so less total memory will usually be required to fit the working set then previously. Also, if you had several compound indices that were made up of different combinations of fields, then you can reduce the total number of indexes on the system. This means storing less indices in memory as well as achieving better insert/update performance since fewer indices must be updated.

As of version 2.6.0, you cannot intersect with geo or text indices and you can intersect at most 2 separate indices with each other. These limitations are likely to change in a future release.

Optimizing Multi-key Indexes It is also possible to intersect an index with itself in the case of multi-key indexes. Consider the below query:

Find me all patients with Diabetes & High Blood Pressure

db.patients.find( {  Conditions : { $all : [ “Diabetes”, “High Blood Pressure” ]  }    }  )
Copy after login

In this case we will find the result set of all Patients with Diabetes, and the result set of all patients with High blood pressure, and intersect the two to get all patients with both. Again, this requires less memory and disk speed for better overall performance. As of the 2.6.0 release, an index can intersect with itself up to 10 times.

Do We Still Need Compound Indexes?

To be clear, compound indexing will ALWAYS be more performant IF you know what you are going to be querying on and can create one ahead of time. Furthermore, if your working set is entirely in memory, then you will not reap any of the benefits of Index Intersection as it is primarily based on reducing IO. But in a more ad-hoc case where one cannot predict the shape of the queries and the working set is much larger than available memory, index intersection will automatically take over and choose the most performant path.

  • Download MongoDB 2.6 Today
  • Learn about all of the key new features in MongoDB 2.6 by downloading the whitepaper
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
Use Composer to solve the dilemma of recommendation systems: andres-montanez/recommendations-bundle Use Composer to solve the dilemma of recommendation systems: andres-montanez/recommendations-bundle Apr 18, 2025 am 11:48 AM

When developing an e-commerce website, I encountered a difficult problem: how to provide users with personalized product recommendations. Initially, I tried some simple recommendation algorithms, but the results were not ideal, and user satisfaction was also affected. In order to improve the accuracy and efficiency of the recommendation system, I decided to adopt a more professional solution. Finally, I installed andres-montanez/recommendations-bundle through Composer, which not only solved my problem, but also greatly improved the performance of the recommendation system. You can learn composer through the following address:

How to configure MongoDB automatic expansion on Debian How to configure MongoDB automatic expansion on Debian Apr 02, 2025 am 07:36 AM

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys

How to ensure high availability of MongoDB on Debian How to ensure high availability of MongoDB on Debian Apr 02, 2025 am 07:21 AM

This article describes how to build a highly available MongoDB database on a Debian system. We will explore multiple ways to ensure data security and services continue to operate. Key strategy: ReplicaSet: ReplicaSet: Use replicasets to achieve data redundancy and automatic failover. When a master node fails, the replica set will automatically elect a new master node to ensure the continuous availability of the service. Data backup and recovery: Regularly use the mongodump command to backup the database and formulate effective recovery strategies to deal with the risk of data loss. Monitoring and Alarms: Deploy monitoring tools (such as Prometheus, Grafana) to monitor the running status of MongoDB in real time, and

Navicat's method to view MongoDB database password Navicat's method to view MongoDB database password Apr 08, 2025 pm 09:39 PM

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

What is the CentOS MongoDB backup strategy? What is the CentOS MongoDB backup strategy? Apr 14, 2025 pm 04:51 PM

Detailed explanation of MongoDB efficient backup strategy under CentOS system This article will introduce in detail the various strategies for implementing MongoDB backup on CentOS system to ensure data security and business continuity. We will cover manual backups, timed backups, automated script backups, and backup methods in Docker container environments, and provide best practices for backup file management. Manual backup: Use the mongodump command to perform manual full backup, for example: mongodump-hlocalhost:27017-u username-p password-d database name-o/backup directory This command will export the data and metadata of the specified database to the specified backup directory.

How to choose a database for GitLab on CentOS How to choose a database for GitLab on CentOS Apr 14, 2025 pm 04:48 PM

GitLab Database Deployment Guide on CentOS System Selecting the right database is a key step in successfully deploying GitLab. GitLab is compatible with a variety of databases, including MySQL, PostgreSQL, and MongoDB. This article will explain in detail how to select and configure these databases. Database selection recommendation MySQL: a widely used relational database management system (RDBMS), with stable performance and suitable for most GitLab deployment scenarios. PostgreSQL: Powerful open source RDBMS, supports complex queries and advanced features, suitable for handling large data sets. MongoDB: Popular NoSQL database, good at handling sea

How to encrypt data in Debian MongoDB How to encrypt data in Debian MongoDB Apr 12, 2025 pm 08:03 PM

Encrypting MongoDB database on a Debian system requires following the following steps: Step 1: Install MongoDB First, make sure your Debian system has MongoDB installed. If not, please refer to the official MongoDB document for installation: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/Step 2: Generate the encryption key file Create a file containing the encryption key and set the correct permissions: ddif=/dev/urandomof=/etc/mongodb-keyfilebs=512

How to set up users in mongodb How to set up users in mongodb Apr 12, 2025 am 08:51 AM

To set up a MongoDB user, follow these steps: 1. Connect to the server and create an administrator user. 2. Create a database to grant users access. 3. Use the createUser command to create a user and specify their role and database access rights. 4. Use the getUsers command to check the created user. 5. Optionally set other permissions or grant users permissions to a specific collection.

See all articles