C3P0多数据源的死锁问题
最近在写的数据迁移工具完成的差不多了,今天将连接池换成C3P0,发现一个问题,就是配置了多个数据源的C3P0在同时获取不同数据源的Connection时会发生死锁。 1.运行如下的代码,用JProfiler测试,会发现死锁的情况: 代码: package com.highgo.test.c3p0dea
最近在写的数据迁移工具完成的差不多了,今天将连接池换成C3P0,发现一个问题,就是配置了多个数据源的C3P0在同时获取不同数据源的Connection时会发生死锁。
1.运行如下的代码,用JProfiler测试,会发现死锁的情况:
代码:
package com.highgo.test.c3p0deadlock; import java.sql.SQLException; import com.mchange.v2.c3p0.ComboPooledDataSource; //加锁source个postgre的ComboPooledDataSource的getConnection用一个锁 public class Test { public static void main(String[] args) throws InterruptedException { ComboPooledDataSource source = new ComboPooledDataSource("source"); ComboPooledDataSource source2 = new ComboPooledDataSource("source"); ComboPooledDataSource postgres = new ComboPooledDataSource("postgres"); ComboPooledDataSource postgres2 = new ComboPooledDataSource("postgres"); new Thread(new SourceGetConn(source), "source").start(); // new Thread(new SourceGetConn(source2), "source2").start(); // Thread.sleep(1000); new Thread(new DestGetConn(postgres), "postgres").start(); // new Thread(new DestGetConn(postgres2), "postgres2").start(); } } class SourceGetConn implements Runnable { private ComboPooledDataSource source = null; public SourceGetConn(ComboPooledDataSource source) { this.source = source; } @Override public void run() { while (true) { try { Thread.sleep(1000); source.getConnection(); System.out.println("I get a Connection! I am in " + Thread.currentThread().getName()); } catch (InterruptedException | SQLException e) { e.printStackTrace(); } } } } class DestGetConn implements Runnable { private ComboPooledDataSource postgres = null; public DestGetConn(ComboPooledDataSource source) { this.postgres = source; } @Override public void run() { while (true) { try { Thread.sleep(1000); postgres.getConnection(); System.out.println("I get a Connection! I am in " + Thread.currentThread().getName()); } catch (InterruptedException | SQLException e) { e.printStackTrace(); } } } }
死锁情况:

可以看到source和postgre两个进程都被一个没有记录的对象锁住了。
2.将上边的代码的Thread.sleep注释去掉,在运行,是不会有死锁问题的,于是查看C3P0的源代码,ComboPooledDataSource@getConnection是继承自AbstractPoolBackedDataSource#getConnection,代码如下:
public Connection getConnection() throws SQLException { PooledConnection pc = getPoolManager().getPool().checkoutPooledConnection(); return pc.getConnection(); } public Connection getConnection(String username, String password) throws SQLException { PooledConnection pc = getPoolManager().getPool(username, password).checkoutPooledConnection(); return pc.getConnection(); }
先看这个PoolManager,AbstractPoolBackedDataSource#getPoolManager方法的实现如下,是线程安全的
private synchronized C3P0PooledConnectionPoolManager getPoolManager() throws SQLException { if (poolManager == null) { ConnectionPoolDataSource cpds = assertCpds(); poolManager = new C3P0PooledConnectionPoolManager(cpds, null, null, this.getNumHelperThreads(), this.getIdentityToken(), this.getDataSourceName()); if (logger.isLoggable(MLevel.INFO)) logger.info("Initializing c3p0 pool... " + this.toString( true ) /* + "; using pool manager: " + poolManager */); } return poolManager; }
再接着看getPool方法,也是线程安全的;
public synchronized C3P0PooledConnectionPool getPool(String username, String password, boolean create) throws SQLException { if (create) return getPool( username, password ); else { DbAuth checkAuth = new DbAuth( username, password ); C3P0PooledConnectionPool out = (C3P0PooledConnectionPool) authsToPools.get(checkAuth); if (out == null) throw new SQLException("No pool has been initialized for databse user '" + username + "' with the specified password."); else return out; } }
public PooledConnection checkoutPooledConnection() throws SQLException { //System.err.println(this + " -- CHECKOUT"); try { PooledConnection pc = (PooledConnection) this.checkoutAndMarkConnectionInUse(); pc.addConnectionEventListener( cl ); return pc; } catch (TimeoutException e) { throw SqlUtils.toSQLException("An attempt by a client to checkout a Connection has timed out.", e); } catch (CannotAcquireResourceException e) { throw SqlUtils.toSQLException("Connections could not be acquired from the underlying database!", "08001", e); } catch (Exception e) { throw SqlUtils.toSQLException(e); } }
public synchronized Connection getConnection() throws SQLException { if ( exposedProxy != null) { //DEBUG //System.err.println("[DOUBLE_GET_TESTER] -- double getting a Connection from " + this ); //new Exception("[DOUBLE_GET_TESTER] -- Double-Get Stack Trace").printStackTrace(); //origGet.printStackTrace(); // System.err.println("c3p0 -- Uh oh... getConnection() was called on a PooledConnection when " + // "it had already provided a client with a Connection that has not yet been " + // "closed. This probably indicates a bug in the connection pool!!!"); logger.warning("c3p0 -- Uh oh... getConnection() was called on a PooledConnection when " + "it had already provided a client with a Connection that has not yet been " + "closed. This probably indicates a bug in the connection pool!!!"); return exposedProxy; } else { return getCreateNewConnection(); } }
package com.highgo.test.c3p0deadlock; import java.sql.SQLException; import com.mchange.v2.c3p0.ComboPooledDataSource; //加锁source个postgre的ComboPooledDataSource的getConnection用一个锁 public class Test { public static void main(String[] args) throws InterruptedException { ComboPooledDataSource source = new ComboPooledDataSource("source"); // ComboPooledDataSource source2 = new ComboPooledDataSource("source"); ComboPooledDataSource postgres = new ComboPooledDataSource("postgres"); // ComboPooledDataSource postgres2 = new ComboPooledDataSource("postgres"); new Thread(new SourceGetConn(source), "source").start(); new Thread(new SourceGetConn(source), "source2").start(); // Thread.sleep(1000); // new Thread(new DestGetConn(postgres), "postgres").start(); // new Thread(new DestGetConn(postgres2), "postgres2").start(); } } class SourceGetConn implements Runnable { private ComboPooledDataSource source = null; public SourceGetConn(ComboPooledDataSource source) { this.source = source; } @Override public void run() { while (true) { try { Thread.sleep(1000); source.getConnection(); System.out.println("I get a Connection! I am in " + Thread.currentThread().getName()); } catch (InterruptedException | SQLException e) { e.printStackTrace(); } } } } class DestGetConn implements Runnable { private ComboPooledDataSource postgres = null; public DestGetConn(ComboPooledDataSource source) { this.postgres = source; } @Override public void run() { while (true) { try { Thread.sleep(1000); postgres.getConnection(); System.out.println("I get a Connection! I am in " + Thread.currentThread().getName()); } catch (InterruptedException | SQLException e) { e.printStackTrace(); } } } }
3.经过测试发现同一个数据源的两个ComboPooledDataSource实例,getConnection方法不加锁的情况下,也是没有问题的。
稍微总结一下:
C3P0在一个ComboPooledDataSource实例的getConnection方法是线程安全的
C3P0在一个数据源的多个ComboPooledDataSource实例的getConnection方法也是线程安全的
C3P0在多个数据源的多个ComboPooledDataSource不同时调用getConnection的情况下,不会发生死锁(基于概率,若干时间之后,肯定会发生死锁)
C3P0在多个数据源的多个ComboPooledDataSource实例的getConnection方法同时(相邻的两行代码)调用时,会发生死锁现象,如1中所述
4.总结:
属于不同数据源的多个ComboPooledDataSource实例的getConnection方法调用要互斥
测试代码如下:
package com.highgo.test.c3p0deadlock; import java.sql.SQLException; import java.util.concurrent.locks.ReentrantLock; import com.mchange.v2.c3p0.ComboPooledDataSource; //加锁source个postgre的ComboPooledDataSource的getConnection用一个锁 public class Test2 { public static void main(String[] args) throws InterruptedException { ComboPooledDataSource source = new ComboPooledDataSource("source"); ComboPooledDataSource source2 = new ComboPooledDataSource("source"); ComboPooledDataSource postgres = new ComboPooledDataSource("postgres"); ComboPooledDataSource postgres2 = new ComboPooledDataSource("postgres"); ReentrantLock lock = new ReentrantLock(); new Thread(new SourceGetConn2(source, lock), "source").start(); new Thread(new SourceGetConn2(source2, lock), "source2").start(); Thread.sleep(1000); new Thread(new DestGetConn2(postgres, lock), "postgres").start(); new Thread(new DestGetConn2(postgres2, lock), "postgres2").start(); } } class SourceGetConn2 implements Runnable { private ComboPooledDataSource source = null; private ReentrantLock lock; public SourceGetConn2(ComboPooledDataSource source, ReentrantLock lock) { this.source = source; this.lock = lock; } @Override public void run() { while (true) { try { Thread.sleep(1000); lock.lock(); source.getConnection(); lock.unlock(); System.out.println("I get a Connection! I am in " + Thread.currentThread().getName()); } catch (InterruptedException | SQLException e) { e.printStackTrace(); } } } } class DestGetConn2 implements Runnable { private ComboPooledDataSource postgres = null; private ReentrantLock lock; public DestGetConn2(ComboPooledDataSource source, ReentrantLock lock) { this.postgres = source; this.lock = lock; } @Override public void run() { while (true) { try { Thread.sleep(1000); lock.lock(); postgres.getConnection(); lock.unlock(); System.out.println("I get a Connection! I am in " + Thread.currentThread().getName()); } catch (InterruptedException | SQLException e) { e.printStackTrace(); } } } }
5.最后总结一个效率还可以的工具类
package com.highgo.hgdbadmin.myutil; import java.sql.Connection; import java.sql.ResultSet; import java.sql.SQLException; import java.sql.Statement; import com.mchange.v2.c3p0.ComboPooledDataSource; public class C3P0Util { public static String SOURCE = "source"; public static String POSTGRES = "postgres"; private ComboPooledDataSource source = null; private ComboPooledDataSource postgres = null; private static C3P0Util instance = null; private C3P0Util() { source = new ComboPooledDataSource("source"); postgres = new ComboPooledDataSource("postgres"); } public static final synchronized C3P0Util getInstance() { if (instance == null) { instance = new C3P0Util(); } return instance; } public synchronized Connection getConnection(String dataSource) throws SQLException { if ("source".equals(dataSource)) { return source.getConnection(); } else if ("postgres".equals(dataSource)) { return postgres.getConnection(); } return null; } public synchronized void close(Connection conn) { try { if (conn != null) { conn.close(); conn = null; } } catch (SQLException e) { } } public synchronized void close(Statement stat) { try { if (stat != null) { stat.close(); stat = null; } } catch (SQLException e) { } } public synchronized void close(ResultSet rest) { try { if (rest != null) { rest.close(); rest = null; } } catch (SQLException e) { } } public static void main(String[] args) { new Thread(new TestThread(), "test").start(); } private static class TestThread implements Runnable { private String dataSource = "source"; @Override public void run() { while (true) { try { Connection conn = C3P0Util.getInstance().getConnection(""); System.out.println("hello,this is " + dataSource); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } if ("source".equals(dataSource)) { dataSource = "postgres"; } else { dataSource = "source"; } } } } }

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

Measuring thread performance in C can use the timing tools, performance analysis tools, and custom timers in the standard library. 1. Use the library to measure execution time. 2. Use gprof for performance analysis. The steps include adding the -pg option during compilation, running the program to generate a gmon.out file, and generating a performance report. 3. Use Valgrind's Callgrind module to perform more detailed analysis. The steps include running the program to generate the callgrind.out file and viewing the results using kcachegrind. 4. Custom timers can flexibly measure the execution time of a specific code segment. These methods help to fully understand thread performance and optimize code.

C code optimization can be achieved through the following strategies: 1. Manually manage memory for optimization use; 2. Write code that complies with compiler optimization rules; 3. Select appropriate algorithms and data structures; 4. Use inline functions to reduce call overhead; 5. Apply template metaprogramming to optimize at compile time; 6. Avoid unnecessary copying, use moving semantics and reference parameters; 7. Use const correctly to help compiler optimization; 8. Select appropriate data structures, such as std::vector.

DMA in C refers to DirectMemoryAccess, a direct memory access technology, allowing hardware devices to directly transmit data to memory without CPU intervention. 1) DMA operation is highly dependent on hardware devices and drivers, and the implementation method varies from system to system. 2) Direct access to memory may bring security risks, and the correctness and security of the code must be ensured. 3) DMA can improve performance, but improper use may lead to degradation of system performance. Through practice and learning, we can master the skills of using DMA and maximize its effectiveness in scenarios such as high-speed data transmission and real-time signal processing.

C performs well in real-time operating system (RTOS) programming, providing efficient execution efficiency and precise time management. 1) C Meet the needs of RTOS through direct operation of hardware resources and efficient memory management. 2) Using object-oriented features, C can design a flexible task scheduling system. 3) C supports efficient interrupt processing, but dynamic memory allocation and exception processing must be avoided to ensure real-time. 4) Template programming and inline functions help in performance optimization. 5) In practical applications, C can be used to implement an efficient logging system.

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

The main steps and precautions for using string streams in C are as follows: 1. Create an output string stream and convert data, such as converting integers into strings. 2. Apply to serialization of complex data structures, such as converting vector into strings. 3. Pay attention to performance issues and avoid frequent use of string streams when processing large amounts of data. You can consider using the append method of std::string. 4. Pay attention to memory management and avoid frequent creation and destruction of string stream objects. You can reuse or use std::stringstream.

To implement loose coupling design in C, you can use the following methods: 1. Use interfaces, such as defining the Logger interface and implementing FileLogger and ConsoleLogger; 2. Dependency injection, such as the DataAccess class receives Database pointers through the constructor; 3. Observer mode, such as the Subject class notifies ConcreteObserver and AnotherObserver. Through these technologies, dependencies between modules can be reduced and code maintainability and flexibility can be improved.
