NoSQL数据库:MongoDB初探
跟着时下炒得火热的NOSQL潮流,学习了一下mongodb,记录在此,希望与感兴趣的同学一起研究! MongoDB概述 mongodb由C++写就,其名字来自hu mongo us这个单词的中间部分,是由10gen开发并维护的,关于它的一个最简洁描述为:scalable, high-performance, ope
跟着时下炒得火热的NOSQL潮流,学习了一下mongodb,记录在此,希望与感兴趣的同学一起研究!
MongoDB概述
mongodb由C++写就,其名字来自humongous这个单词的中间部分,是由10gen开发并维护的,关于它的一个最简洁描述为:scalable, high-performance, open source, schema-free, document-oriented database。MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。
MongoDB特性:
l 面向文档存储
l 全索引支持,扩展到内部对象和内嵌数组
l 复制和高可用
l 自动分片支持云级扩展性
l 查询记录分析
l 动态查询
l 快速,就地更新
l 支持Map/Reduce操作
l GridFS文件系统
l 商业支持,培训和咨询
官网: http://www.mongodb.org/
配置
Master-slaves 模式
机器 | IP | 角色 |
test001 | 192.168.1.1 | master |
test002 | 192.168.1.2 | slave |
test003 | 192.168.1.3 | slave |
test004 | 192.168.1.4 | slave |
test005 | 192.168.1.5 | slave |
test006 | 192.168.1.6 | slave |
启动master:
1 |
|
添加repl用户:
1 2 3 |
|
启动slaves:
1 2 |
|
添加repl用户:
1 2 3 |
|
autoresync 参数会在系统发生意外情况造成主从数据不同步时,自动启动复制操作 (同步复制 10 分钟内仅执行一次)。除此之外,还可以用 –slavedelay 设定更新频率(秒)。
通常我们会使用主从方案实现读写分离,但需要设置 Slave_OK。
slaveOk
When querying a replica pair or replica set, drivers route their requests to the master mongod by default; to perform a query against an (arbitrarily-selected) slave, the query can be run with the slaveOk option. Here’s how to do so in the shell:
db.getMongo().setSlaveOk(); // enable querying a slave db.users.find(...)
Note: some language drivers permit specifying the slaveOk option on each find(), others make this a connection-wide setting. See your language’s driver for details.
Replica Set模式
Replica Sets 使用 n 个 Mongod 节点,构建具备自动容错转移(auto-failover)、自动恢复(auto-recovery) 的高可用方案。
机器 | IP | 角色 |
test001 | 192.168.1.1 | secondary |
test002 | 192.168.1.2 | secondary |
test003 | 192.168.1.3 | primary |
test004 | 192.168.1.4 | secondary |
test005 | 192.168.1.5 | secondary |
test006 | 192.168.1.6 | secondary |
test007 | 192.168.1.7 | secondary |
启动:
1 |
|
添加repl用户:
1 2 3 |
|
配置:
1 2 3 4 5 6 7 8 9 10 |
|
查看:
访问 http://test001 :28017/_replSet
或者
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
在Replica Sets上做操作后调用getlasterror使写操作同步到至少3台机器后才返回
db.runCommand( { getlasterror : 1 , w : 3 } )
注:该模式不支持auth功能,需要auth功能请选择m-s模式
Sharding模式
要构建一个 MongoDB Sharding Cluster,需要三种角色:
- Shard Server: mongod 实例,用于存储实际的数据块。
- Config Server: mongod 实例,存储了整个 Cluster Metadata,其中包括 chunk 信息。
- Route Server: mongos 实例,前端路由,客户端由此接入,且让整个集群看上去像单一进程数据库。
机器 | IP | 角色 |
test002 | 192.168.1.2 | mongod shard11:27017 |
test003 | 192.168.1.3 | mongod shard21:27017 |
test004 | 192.168.1.4 | mongod shard31:27017 |
test005 | 192.168.1.5 | mongod config1:20000 mongs1:30000 |
test006 | 192.168.1.6 | mongod config2:20000 mongs2:30000 |
test007 | 192.168.1.7 | mongod config3:20000 mongs3:30000 |
test008 | 192.168.1.8 | mongod shard12:27017 |
test009 | 192.168.1.9 | mongod shard22:27017 |
test010 | 192.168.1.10 | mongod shard32:27017 |
Shard配置
Shard1
[test002; test008]
test002:
1 |
|
test008:
1 |
|
初始化shard1
1 2 3 4 5 |
|
Shard2
[test003; test009]
test003:
1 |
|
test009:
1 |
|
初始化shard2
1 2 3 4 5 |
|
Shard3
[test004; test010]
test004:
1 |
|
test010:
1 |
|
初始化shard3
1 2 3 4 5 |
|
config server配置
[test005; test006; test007]
1 |
|
Mongos配置
[test005; test006; test007]
1 |
|
Route 转发请求到实际的目标服务进程,并将多个结果合并回传给客户端。Route 本身并不存储任何数据和状态,仅在启动时从 Config Server 获取信息。Config Server 上的任何变动都会传递给所有的 Route Process。
Configuring the Shard Cluster
1. 连接admin数据库
1 |
|
2. 加入shards
1 2 3 |
|
3. Listing shards
1 |
|
如果列出了以上3个shards,表示shards已经配置成功
4. 激活数据库和表分片
1 2 |
|
使用
shell操作数据库
超级用户相关:
1) 进入数据库admin
1 |
|
2) 增加或修改用户密码
1 |
|
3) 查看用户列表
1 |
|
4) 用户认证
1 |
|
5) 删除用户
1 |
|
6) 查看所有用户
1 |
|
7) 查看所有数据库
1 |
|
8) 查看所有的collection
1 |
|
9) 查看各collection的状态
1 |
|
10) 查看主从复制状态
1 |
|
11) 修复数据库
1 |
|
12) 设置记录profiling,0=off 1=slow 2=all
1 |
|
13) 查看profiling
1 |
|
14) 拷贝数据库
1 |
|
15) 删除collection
1 |
|
16) 删除当前的数据库
1 |
|
增加删除修改:
1) Insert
1 2 3 |
|
嵌套对象:
1 |
|
数组对象:
1 |
|
2) delete
删除name=’dump’的用户信息:
1 |
|
删除foo表所有信息:
1 |
|
3) update
//update foo set xx=4 where yy=6
//如果不存在则插入,允许修改多条记录
1 |
|
查询:
1 2 3 4 5 6 7 8 |
|
其他:
1 2 3 4 5 |
|
索引:
1(ascending),-1(descending)
1 2 3 4 5 6 7 |
|
MongoDB Drivers
C
C#
C++
Haskell
Java
Javascript
Perl
PHP
Python
Ruby
Scala (via Casbah)
Mongodb支持的client 编程api非常多,由于dump中心是建立在hadoop的基础上的,所以着重介绍java api,后面的测试程序采用的也是java api.
MongoDB in Java
下载MongoDB的Java驱动,把jar包(mongo-2.3.jar)扔到项目里去就行了,
Java中,Mongo对象是线程安全的,一个应用中应该只使用一个Mongo对象。Mongo对象会自动维护一个连接池,默认连接数为10。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
MongoDB 测试
测试版本: 1.6.3
采用单线程分别插入100万,300万,500万,1000万数据和多个线程,每线程插入100万数据.
插入数据格式:
1 |
|
1) Master slaves模式
Insert
Per-thread rows | run time | Per-thread insert | Total-insert | Total rows | threads |
1000000 | 20 | 50000 | 50000 | 1000000 | 1 |
3000000 | 60 | 50000 | 50000 | 3000000 | 1 |
5000000 | 99 | 50505 | 50505 | 5000000 | 1 |
8000000 | 159 | 50314 | 50314 | 8000000 | 1 |
10000000 | 208 | 48076 | 48076 | 10000000 | 1 |
1000000 | 64 | 15625 | 31250 | 2000000 | 2 |
Mongodb只有主节点才能进行插入和更新操作.
Update
数据格式:
1 |
|
Per-thread rows | run time | Per-thread update | Total-update | Total rows | threads |
1000000 | 96 | 10416 | 10416 | 1000000 | 1 |
3000000 | 287 | 10452 | 10452 | 3000000 | 1 |
1000000 | 188 | 5319 | 15957 | 3000000 | 3 |
1000000 | 351 | 2849 | 14245 | 5000000 | 5 |
Select
以”_id”字段为key,返回整条记录
a) 客户端:单机多线程
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 72 | 13888 | 13888 | 1000000 | 1 |
1000000 | 129 | 7751 | 77519 | 10000000 | 10 |
1000000 | 554 | 1805 | 90252 | 50000000 | 50 |
1000000 | 1121 | 892 | 89206 | 100000000 | 100 |
1000000 | 2256 | 443 | 88652 | 200000000 | 200 |
b) 客户端:分布式多线程
程序部署在39台机器上
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 173 | 5780 | 5780*39=223470 | 1000000*39 | 1 |
1000000 | 1402 | 713 | 7132*39=278148 | 10000000*39 | 10 |
500000 | 1406 | 355 | 7112*39=277368 | 10000000*39 | 20 |
200000 | 1433 | 139 | 6978*39=272142 | 10000000*39 | 50 |
2) Replica Set 模式
Insert
Per-thread rows | run time | Per-thread insert | Total-insert | Total rows | threads |
1000000 | 40 | 25000 | 25000 | 1000000 | 1 |
3000000 | 117 | 25641 | 25641 | 3000000 | 1 |
5000000 | 211 | 23696 | 23696 | 5000000 | 1 |
8000000 | 289 | 27681 | 27681 | 8000000 | 1 |
10000000 | 388 | 25773 | 25773 | 10000000 | 1 |
1000000 | 83 | 12048 | 24096 | 2000000 | 2 |
1000000 | 210 | 4762 | 23809 | 5000000 | 5 |
Update
Per-thread rows | run time | Per-thread update | Total-update | Total rows | threads |
1000000 | 28 | 35714 | 35714 | 1000000 | 1 |
3000000 | 83 | 36144 | 36144 | 3000000 | 1 |
1000000 | 146 | 6849 | 20547 | 3000000 | 3 |
1000000 | 262 | 3816 | 19083 | 5000000 | 5 |
Select
以”_id”字段为key,返回整条记录
a) 客户端:单机多线程
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 198 | 5050 | 5050 | 1000000 | 1 |
1000000 | 264 | 3787 | 37878 | 10000000 | 10 |
1000000 | 436 | 2293 | 114678 | 50000000 | 50 |
1000000 | 754 | 1326 | 132625 | 100000000 | 100 |
1000000 | 1526 | 655 | 131061 | 200000000 | 200 |
b) 客户端:分布式多线程
程序部署在39台机器上
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 216 | 4629 | 4629*39=180531 | 1000000*39 | 1 |
1000000 | 1375 | 729 | 7293*39=284427 | 10000000*39 | 10 |
500000 | 1469 | 340 | 6807*39=265473 | 10000000*39 | 20 |
200000 | 1561 | 128 | 6406*39=249834 | 10000000*39 | 50 |
3) Sharding 模式
Insert
Per-thread rows | run time | Per-thread insert | Total-insert | Total rows | threads |
1000000 | 58 | 17241 | 17241 | 1000000 | 1 |
3000000 | 180 | 16666 | 16666 | 3000000 | 1 |
5000000 | 373 | 13404 | 13404 | 5000000 | 1 |
2000000 | 234 | 8547 | 17094 | 4000000 | 2 |
2000000 | 447 | 4474 | 22371 | 10000000 | 5 |
Update
Per-thread rows | run time | Per-thread update | Total-update | Total rows | threads |
1000000 | 38 | 26315 | 26315 | 1000000 | 1 |
3000000 | 115 | 26086 | 26086 | 3000000 | 1 |
1000000 | 64 | 15625 | 46875 | 3000000 | 3 |
1000000 | 93 | 10752 | 53763 | 5000000 | 5 |
Select
以”_id”字段为key,返回整条记录
a) 客户端:单机多线程
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 277 | 3610 | 3610 | 1000000 | 1 |
1000000 | 456 | 2192 | 21929 | 10000000 | 10 |
1000000 | 1158 | 863 | 43177 | 50000000 | 50 |
1000000 | 2299 | 434 | 43497 | 100000000 | 100 |
b) 客户端:分布式多线程
程序部署在39台机器上
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 659 | 1517 | 1517*39= 59163 | 1000000*39 | 1 |
1000000 | 8540 | 117 | 1170*39=45630 | 10000000*39 | 10 |
小结:
Mongodb在M-S和Repl-Set模式下查询效率还是不错的,区别在于Repl-Set模式如果有primary节点挂掉,系统自己会选举出另一个primary节点,不会影响后续的使用,原来的主节点恢复后自动成为secondary节点,而M-S模式一旦master 节点挂掉需要手工将别的slaves 节点修改成master,另外Repl-Set模式最多只能有7个节点.
由于sharding模式查询速度下降明显,耗时太长,所以只测试了2轮,估计他的威力应该在数据量非常大的环境下才能体现出来吧,以上数据仅供参考,现在只是简单的进行了测试,接下来会对源码进行一下研究,欢迎和感兴趣的同学多多交流!
?

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











When developing an e-commerce website, I encountered a difficult problem: how to provide users with personalized product recommendations. Initially, I tried some simple recommendation algorithms, but the results were not ideal, and user satisfaction was also affected. In order to improve the accuracy and efficiency of the recommendation system, I decided to adopt a more professional solution. Finally, I installed andres-montanez/recommendations-bundle through Composer, which not only solved my problem, but also greatly improved the performance of the recommendation system. You can learn composer through the following address:

Oracle is not only a database company, but also a leader in cloud computing and ERP systems. 1. Oracle provides comprehensive solutions from database to cloud services and ERP systems. 2. OracleCloud challenges AWS and Azure, providing IaaS, PaaS and SaaS services. 3. Oracle's ERP systems such as E-BusinessSuite and FusionApplications help enterprises optimize operations.

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

Detailed explanation of MongoDB efficient backup strategy under CentOS system This article will introduce in detail the various strategies for implementing MongoDB backup on CentOS system to ensure data security and business continuity. We will cover manual backups, timed backups, automated script backups, and backup methods in Docker container environments, and provide best practices for backup file management. Manual backup: Use the mongodump command to perform manual full backup, for example: mongodump-hlocalhost:27017-u username-p password-d database name-o/backup directory This command will export the data and metadata of the specified database to the specified backup directory.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

Encrypting MongoDB database on a Debian system requires following the following steps: Step 1: Install MongoDB First, make sure your Debian system has MongoDB installed. If not, please refer to the official MongoDB document for installation: https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/Step 2: Generate the encryption key file Create a file containing the encryption key and set the correct permissions: ddif=/dev/urandomof=/etc/mongodb-keyfilebs=512

GitLab Database Deployment Guide on CentOS System Selecting the right database is a key step in successfully deploying GitLab. GitLab is compatible with a variety of databases, including MySQL, PostgreSQL, and MongoDB. This article will explain in detail how to select and configure these databases. Database selection recommendation MySQL: a widely used relational database management system (RDBMS), with stable performance and suitable for most GitLab deployment scenarios. PostgreSQL: Powerful open source RDBMS, supports complex queries and advanced features, suitable for handling large data sets. MongoDB: Popular NoSQL database, good at handling sea

To set up a MongoDB user, follow these steps: 1. Connect to the server and create an administrator user. 2. Create a database to grant users access. 3. Use the createUser command to create a user and specify their role and database access rights. 4. Use the getUsers command to check the created user. 5. Optionally set other permissions or grant users permissions to a specific collection.
