Oracle X$ tables – Part 1 – Where do they get their data f
Oracle X$ tables – Part 1 – Where do they get their data from? by Tanel Poder Posted on January 10, 2014 It’s long-time public knowledge that X$ fixed tables in Oracle are just “windows” into Oracle’s memory. So whenever you query an
Oracle X$ tables – Part 1 – Where do they get their data from?
by
Tanel Poder
Posted on
January 10, 2014
It’s long-time public knowledge that X$ fixed tables in Oracle are just “windows” into Oracle’s memory. So whenever you query an X$ table, the FIXED TABLE rowsource function in your SQL execution plan will just read some memory structure, parse its output and show you the results in tabular form. This is correct, but not the whole truth.
Check this example. Let’s query the X$KSUSE table, which is used by V$SESSION:
SQL> SELECT addr, indx, ksuudnam FROM x$ksuse WHERE rownum <strong>391513C4</strong> 1 SYS 3914E710 2 SYS 3914BA5C 3 SYS 39148DA8 4 SYS 391460F4 5 SYS
Now let’s check in which Oracle memory region this memory address resides (SGA, PGA, UGA etc). I’m using my script fcha for this (Find CHunk Address). You should probably not run this script in busy production systems as it uses the potentially dangerous X$KSMSP fixed table:
SQL> @fcha <strong>391513C4</strong> Find in which heap (UGA, PGA or Shared Pool) the memory address 391513C4 resides... WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention in systems under load and with large shared pool. This may even completely hang your instance until the query has finished! You probably do not want to run this in production! Press ENTER to continue, CTRL+C to cancel... LOC KSMCHPTR KSMCHIDX KSMCHDUR KSMCHCOM KSMCHSIZ KSMCHCLS KSMCHTYP KSMCHPAR --- -------- ---------- ---------- ---------------- ---------- -------- ---------- -------- <span><strong>SGA</strong></span> 39034000 1 1 permanent memor 3977316 perm 0 00 SQL>
Ok, these X$KSUSE (V$SESSION) records reside in a permanent allocation in SGA and my X$ query apparently just parsed & presented the information from there.
Now, let’s query something else, for example the “Soviet Union” view X$KCCCP:
SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F692347C</strong> 0 1 1 F692347C 1 1 2 F692347C 2 1 3 F692347C 3 1 4 F692347C 4 1 5
Ok, let’s see where do these records reside:
SQL> @fcha <strong>F692347C</strong> Find in which heap (UGA, PGA or Shared Pool) the memory address F692347C resides... WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention in systems under load and with large shared pool. This may even completely hang your instance until the query has finished! You probably do not want to run this in production! Press ENTER to continue, CTRL+C to cancel... LOC KSMCHPTR KSMCHIDX KSMCHDUR KSMCHCOM KSMCHSIZ KSMCHCLS KSMCHTYP KSMCHPAR --- -------- ---------- ---------- ---------------- ---------- -------- ---------- -------- <span><strong>UGA</strong></span> F6922EE8 <strong>kxsFrame4kPage</strong> 4124 freeabl 0 00 SQL>
Wow, why does the X$KCCCP data reside in my session’s UGA? This is where the extra complication (and sophistication) of X$ fixed tables comes into play!
Some X$ tables do not simply read whatever is in some memory location, but they have helper functions associated with them (something like fixed packages that the ASM instance uses internally). So, whenever you query this X$, then first a helper function is called, which will retrieve the source data from whereever it needs to, then copies it to your UGA in the format corresponding to this X$ and then the normal X$ memory location parsing & presentation code kicks in.
If you trace what the X$KCCCP access does – you’d see a bunch of control file parallel read wait events every time you query the X$ table (to retrieve the checkpoint progress records). So this X$ is not doing just a passive read only presentation of some memory structure (array). The helper function will first do some real work, allocates some runtime memory for the session (the kxsFrame4kPage chunk in UGA) and copies the results of its work to this UGA area – so that the X$ array & offset parsing code can read and present it back to the query engine.
In other words, the ADDR column in X$ tables does not necessarily show where the source data it shows ultimately lives, but just where the final array that got parsed for presentation happened to be. Sometimes the parsed data structure is the ultimate source where it comes from, sometimes a helper function needs to do a bunch of work (like taking latches and walking linked lists for X$KSMSP or even doing physical disk reads from controlfiles for X$KCCCP access).
And more, let’s run the same query against X$KCCCP twice:
SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F69254B4</strong> 0 1 1 F69254B4 1 1 2 F69254B4 2 1 3 F69254B4 3 1 4 F69254B4 4 1 5
And once more:
SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F692B508</strong> 0 1 1 F692B508 1 1 2 F692B508 2 1 3 F692B508 3 1 4 F692B508 4 1 5
See how the ADDR column has changed between executions even though we are querying the same data! This is not because the controlfiles or the source data have somehow relocated. It’s just that the temporary cursor execution scratch area, where the final data structure was put for presentation (kxsFrame4kPage chunk in UGA), just happened to be allocated from different locations for the two different executions.
There may be exceptions, but as long as the ADDR resides in SGA, I’d say it’s the actual location of where the data lives – but when it’s in UGA/PGA, it may be just the temporary cursor scratch area and the source data was taken from somewhere else (especially when the ADDR constantly changes or alternates between 2-3 different variants when repeatedly running your X$ query). Note that there are X$ tables which intentionally read data from arrays in your UGA (the actual source data lives in the UGA or PGA itself), but more about that in the future.
Related Posts
- Where is LOB data stored?
- Profiling trace files with preprocessor external tables in 11g and some parallel execution hacking
- Oracle In-Memory Column Store Internals – Part 1 – Which SIMD extensions are getting…
- Oracle Exadata Performance series – Part 1: Should I use Hugepages on Linux Database Nodes?
- When do Oracle Parallel Execution Slaves issue buffered physical reads – Part 2?

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Solutions to Oracle cannot be opened include: 1. Start the database service; 2. Start the listener; 3. Check port conflicts; 4. Set environment variables correctly; 5. Make sure the firewall or antivirus software does not block the connection; 6. Check whether the server is closed; 7. Use RMAN to recover corrupt files; 8. Check whether the TNS service name is correct; 9. Check network connection; 10. Reinstall Oracle software.

The method to solve the Oracle cursor closure problem includes: explicitly closing the cursor using the CLOSE statement. Declare the cursor in the FOR UPDATE clause so that it automatically closes after the scope is ended. Declare the cursor in the USING clause so that it automatically closes when the associated PL/SQL variable is closed. Use exception handling to ensure that the cursor is closed in any exception situation. Use the connection pool to automatically close the cursor. Disable automatic submission and delay cursor closing.

In Oracle, the FOR LOOP loop can create cursors dynamically. The steps are: 1. Define the cursor type; 2. Create the loop; 3. Create the cursor dynamically; 4. Execute the cursor; 5. Close the cursor. Example: A cursor can be created cycle-by-circuit to display the names and salaries of the top 10 employees.

To stop an Oracle database, perform the following steps: 1. Connect to the database; 2. Shutdown immediately; 3. Shutdown abort completely.

Oracle database paging uses ROWNUM pseudo-columns or FETCH statements to implement: ROWNUM pseudo-columns are used to filter results by row numbers and are suitable for complex queries. The FETCH statement is used to get the specified number of first rows and is suitable for simple queries.

Building a Hadoop Distributed File System (HDFS) on a CentOS system requires multiple steps. This article provides a brief configuration guide. 1. Prepare to install JDK in the early stage: Install JavaDevelopmentKit (JDK) on all nodes, and the version must be compatible with Hadoop. The installation package can be downloaded from the Oracle official website. Environment variable configuration: Edit /etc/profile file, set Java and Hadoop environment variables, so that the system can find the installation path of JDK and Hadoop. 2. Security configuration: SSH password-free login to generate SSH key: Use the ssh-keygen command on each node

SQL statements can be created and executed based on runtime input by using Oracle's dynamic SQL. The steps include: preparing an empty string variable to store dynamically generated SQL statements. Use the EXECUTE IMMEDIATE or PREPARE statement to compile and execute dynamic SQL statements. Use bind variable to pass user input or other dynamic values to dynamic SQL. Use EXECUTE IMMEDIATE or EXECUTE to execute dynamic SQL statements.

When Oracle log files are full, the following solutions can be adopted: 1) Clean old log files; 2) Increase the log file size; 3) Increase the log file group; 4) Set up automatic log management; 5) Reinitialize the database. Before implementing any solution, it is recommended to back up the database to prevent data loss.
