十分简单的redis使用说明及性能测试
转载请注明出处:http://blog.csdn.net/jmppok/article/details/18085181 redis相比很多人都知道,是一个内存式的key-value数据库,存取速度极快,使用非常简单,支持多种语言。本文对其使用进行一个简要说明,并进行简单测试。 1.下载与编译 可以从redis官
转载请注明出处:http://blog.csdn.net/jmppok/article/details/18085181
redis相比很多人都知道,是一个内存式的key-value数据库,存取速度极快,使用非常简单,支持多种语言。本文对其使用进行一个简要说明,并进行简单测试。
1.下载与编译
可以从redis官网下载最新的源码包:http://www.redis.io/
编译十分简单make既可。
2.redis安装与配置
实际上并不需要安装。redis编译后会在src目录下生成redis-server,它是一个可执行文件,即启动redis服务。不过它需要一个配置文件。配置文件写法网上很多了,这里直接给出一个示例:
daemonize yes pidfile /tmp/redis/var/redis.pid port 6379 timeout 300 loglevel debug logfile /tmp/redis/var/redis.log databases 16 save 900 1 save 300 10 save 60 10000 rdbcompression yes dbfilename dump.rdb dir /tmp/redis/var/ appendonly no appendfsync always #glueoutputbuf yes #shareobjects no #shareobjectspoolsize 1024
然后直接运行./redis-server redis.conf就可以启动redis服务了,是不是很方便呢?
3.C/C++访问redis
在redis源码目录下有一个deps目录,下面有一个hiredis目录。redis编译时会自动编译该目录生成libhiredis.a,通过引用hiredis.h 和 libhiredis.a就可以访问redis了。具体步骤如下:
1)创建一个redisContext
2)通过redisContext执行命令
3)从返回redisReply中获取所需数据
代码如下:
redisContext * c = redisConnect((char *)"192.168.150.135",6379); const char * pData = "this is a test";
redisReply *reply1 = (redisReply *)redisCommand(c,"SET 100 %s",pData);
freeReplyObject(reply1);
redisReply *reply2 = (redisReply *)redisCommand(c,"GET 100");
freeReplyObject(reply2);
是不是非常简单呢?
不过需要注意的是,redis接受的数据是字符串,对于二进制数据,可以通过base64编码来解决。具体可参看我的另一篇文章。
4.Java访问redis
redis可以支持多种语言,当然也可以支持Java。
首先需要下载redis的java包。jedis.jar。这里提供一个下载地址:redis的Java客户端jedis
使用如下:
Jedis jedis = new Jedis("192.168.150.135"); jedis.set("100","this is a test"); String data = jedis.get("100");
5.性能测试
测试方法:向redis写一个1M的数据,分别写10次,读10次,计算其耗时。分C++和Java两个版本进行测试。
C++测试代码
#include <stdio.h> #include "hiredis.h" #include <string.h> #include <time.h> int main(int argc, char **argv) { printf("CLOCKS_PER_SEC:%d\n",CLOCKS_PER_SEC); redisContext *c; redisReply *reply; c = redisConnect((char *)"one-60",6379); char * pData; reply = (redisReply *)redisCommand(c,"GET 0"); int size = strlen(reply->str); pData = new char[size+1]; strcpy(pData,reply->str); freeReplyObject(reply); clock_t start, finish; start = clock(); for(int i=0;i<10; i++) { reply = (redisReply *)redisCommand(c,"GET %d",i); freeReplyObject(reply); } finish = clock(); double duration = (double)(finish - start) / CLOCKS_PER_SEC*1000; printf("GET Time used:%f ms.\n",duration); start = clock(); for(int i=0;i<10; i++) { reply = (redisReply *)redisCommand(c,"SET %d %s",i,pData); freeReplyObject(reply); } finish = clock(); duration = (double)(finish - start) / CLOCKS_PER_SEC*1000; printf("SET Time used:%f ms.\n",duration); delete []pData; redisFree(c); }
CLOCKS_PER_SEC:1000000 GET Time used:190.000000 ms. SET Time used:70.000000 ms.
Java测试代码
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.util.Date; import redis.clients.jedis.Jedis; public class JedisTest { public static void main(String[] args) { Jedis jedis = new Jedis("10.100.211.232"); String f = "/tmp/e2.txt.backup"; try { File file = new File(f); BufferedReader reader = new BufferedReader(new FileReader(file)); String data = reader.readLine(); reader.close(); Date start = new Date(); for(int i=0; i<10; i++) { jedis.set(i+"", data); } Date end = new Date(); System.out.println("Set used(ms):"+(end.getTime()-start.getTime())); start = new Date(); for(int i=0; i<10; i++) { String v = jedis.get(i+""); } end = new Date(); System.out.println("Get used(ms):"+(end.getTime()-start.getTime())); }catch (Exception e) { e.printStackTrace(); } jedis.disconnect(); } }
测试结果
Set used(ms):1212 Get used(ms):1437
6.总结
redis效率还是非常高的,读写1M数据的数据,耗时都在10ms左右。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information
