目录
起伏跌宕
速度问题
成本考虑
评估挑战
数据质量
用户体验
实时运营
API和RAG
首页 科技周边 人工智能 LinkedIn在利用大型语言模型服务十亿用户中的收获

LinkedIn在利用大型语言模型服务十亿用户中的收获

Apr 26, 2024 pm 04:49 PM
人工智能 linkedin genai

LinkedIn在利用大型语言模型服务十亿用户中的收获

在全球拥有超过10亿用户的LinkedIn,不断挑战当今企业技术的极限。很少有公司能够太像LinkedIn那样运营,或者拥有类似的大量数据资源。

这个专注于商业和就业的社交媒体平台将合格的候选人与潜在雇主联系起来,帮助填补职位空缺是其核心业务。同样重要的是确保平台上的帖子反映了雇主和消费者的需求。在LinkedIn的模式下,这些匹配过程一直依赖于技术。

到了2023年夏天,当GenAI第一次高涨时,LinkedIn开始考虑是否利用大型语言模型(LLMs)来匹配候选人与雇主,并使信息流更加有用。

因此,这家社交媒体巨头开启了一段GenAI的旅程,并现在正在报告其利用Microsoft的Azure OpenAI服务的经验结果。各行各业的CIOs都可以从LinkedIn中在此过程中学到的一些经验。

起伏跌宕

正如大多数CIO所经历的那样,采用新兴技术伴随着试验和挫折。LinkedIn的情况也不例外,据该公司的首席软件工程师和技术负责人Juan Bottaro所说,其走向LLM协同的道路一点也不平坦。

Bottaro表示,最初的成果“感觉不够完善”,“连接的点还不够多。”

围绕GenAI的首波炒作并没有帮助。

“LLM是新事物,感觉它能解决所有问题,”Bottaro说。“我们开始时对LLM能做什么并没有一个非常清晰的概念。”

例如,早期版本的改进型职位匹配工作可以说是相当的,用一个不太恰当的词来说,粗鲁。或者至少过于直白。

“点击‘评估我是否适合这份工作’后得到‘你完全不适合’并不实用,”Bottaro说。“我们希望[回应]既事实准确,同时也要有同理心。有些会员可能正在考虑转行到他们目前并不十分适合的领域,需要帮助了解差距和下一步该怎么做。”

因此,LinkedIn初步学到的一个重要经验是调整LLM以满足观众的期望——并帮助LLM理解如何以一种或许不是人类,但至少是人性化的方式来回应。

速度问题

尽管LinkedIn拥有超过十亿会员,依靠LinkedIn的LLM工作的大部分求职功能最初是针对高级会员的,这是一个相对较小的群体。(LinkedIn拒绝透露其拥有多少高级会员。)

在如此大的规模运作时,速度是至关重要的,特别是在与相关职位匹配候选人这样细致的事务上。这里,人们认为LLM会有所帮助,因为LLM的一个经常被提及的优点是其速度,使它们能够迅速完成复杂的步骤。但Bottaro表示,LinkedIn的部署并非如此。

“我不会说LLM很快。我不认为速度是一个优势,”他说。

速度可以有多种定义。虽然在操作上LLM可能没有像希望的那样快,但Bottaro表示整体部署过程的加速令人震惊。“这项新技术的超能力在于你可以非常快速地创建原型,大约在两到三个月之间。在这项技术出现之前,这是不可能的,”他说。

当被问及如果没有LLM,项目的各个方面需要多久时,Bottaro表示有些可能根本无法完成,而其他元素“可能需要几年时间。”

作为一个例子,Bottaro提到了旨在理解意图的系统部分。没有LLM,这可能需要两到三个月,但LLM在“不到一周”的时间内就掌握了它。

成本考虑

Bottaro称之为“障碍”的一个方面是成本。同样,成本在项目的不同阶段意味着不同的东西,正如LinkedIn的经验所示。

“我们用于开发的金额微不足道,”Bottaro说。但当涉及到向LinkedIn的客户提供数据时,成本激增。

“即便只是针对几百万会员,”Bottaro说,这可能暗示了高级会员的数量,价格也飙升了。这是因为LLM的定价——至少是LinkedIn与Microsoft(其LLM提供商及母公司)达成的许可协议——是基于使用量的,具体来说是输入和输出令牌的使用量。

一位AI供应商的首席执行官Tarun Thummala在一篇与此项目无关的LinkedIn帖子中解释说,LLM的输入和输出令牌大约相当于0.75个单词。LLM供应商通常按成千上万或成百万卖令牌。例如,LinkedIn使用的Azure OpenAI在美国东部地区收费标准为每100万个8K GPT-4输入令牌30美元,每100万个8K GPT-4输出令牌60美元。

评估挑战

LinkedIn为其项目设定的另一个功能目标是自动评估。LLM在准确性、相关性、安全性和其他关注点方面的评估一直是个挑战。领先的组织和LLM制造商一直在尝试自动化一些工作,但据LinkedIn称,这种能力“仍然是在进行中”。

没有自动化评估,LinkedIn报告称“工程师们只能靠目测结果,并在有限的样本集上进行测试,且通常会有超过1天的延迟才能知道指标。”

该公司正在构建基于模型的评估器,以帮助估计关键的LLM指标,如整体质量得分、幻觉率、连贯性和负责任的AI违规情况。这样做将能够加快实验的速度,公司的工程师说,尽管LinkedIn的工程师在幻觉检测方面取得了一些成功,但他们还没有完成该领域的工作。

数据质量

LinkedIn在其职位匹配努力中遇到的部分挑战归结为双方的数据质量问题:雇主和潜在雇员。

LLM只能使用提供给它的数据,有时候职位发布并不精确或全面地说明雇主所寻求的技能。另一方面,一些求职者发布的简历表述不佳,无法有效反映他们在解决问题等方面的丰富经验。

在这方面,Bottaro看到了LLM帮助雇主和潜在雇员的潜力。通过改善雇主和LinkedIn用户的书写,双方都能受益,因为公司的职位匹配LLM在数据输入质量更高时能够更有效地工作。

用户体验

在处理如此庞大的会员基础时,准确性和相关性指标可能“给人一种虚假的安慰感,”Bottaro说。例如,如果LLM“90%的时间都做得对,这意味着十分之一的人会有糟糕的体验,”他说。

使这种部署更加困难的是,提供有用、有帮助且准确答案所涉及的极端细微差别和判断。

“你如何定义什么是好的,什么是坏的?我们花了很多时间与语言学家一起制定关于如何提供全面代表性的指导。我们也做了很多用户研究,”Bottaro说。“你如何训练人们撰写正确的回应?你如何定义任务,规定回应应该是什么样的?产品可能试图建设性或有帮助。它不试图假设太多,因为那是幻觉开始的地方。我们对回应的一致性感到非常自豪。”

实时运营

LinkedIn庞大的规模为职位匹配带来了另一个挑战。在拥有十亿会员的情况下,一个职位广告在发布几分钟内可能会收到数百甚至数千个应聘回应。如果看到已经有数百人申请,许多求职者可能就不会再费心申请了。这就要求LLM非常迅速地找到匹配的会员,在资质较低的申请者提交材料之前做出反应。之后,会员是否看到通知并及时做出反应仍然是一个问题。

在雇主方面,挑战在于找到最合适的应聘者——不一定是反应最快的人。一些公司不愿公布薪资范围,这进一步复杂化了双方的努力,因为最合格的应聘者可能对职位的薪酬不感兴趣。这是一个LLM无法解决的问题。

API和RAG

LinkedIn庞大的数据库包含了关于个人、雇主、技能和课程的许多独特信息,但其LLM尚未接受过这些数据的培训。因此,根据LinkedIn工程师的说法,它们目前无法使用这些资产进行任何推理或生成响应的活动,因为这些资产是如何存储和提供的。

在这里,检索增强生成(RAG)是一个典型的解决方案。通过建立内部API的管道,企业可以用额外的上下文“增强”LLM提示,以更好地指导和限制LLM的响应。LinkedIn的大部分数据通过RPC API公开,公司的工程师说这“方便人类以编程方式调用”,但“对LLM并不友好”。

为了解决这个问题,LinkedIn的工程师围绕其API“封装了技能”,给它们提供了一个“对LLM友好的API功能描述以及何时使用它”,以及配置细节、输入和输出架构以及将每个API的LLM版本映射到其底层(实际)RPC版本所需的所有逻辑。

LinkedIn的工程师在一份声明中写道:“像这样的技能使LLM能够执行与我们产品相关的各种操作,如查看个人资料、搜索文章/人员/职位/公司,甚至查询内部分析系统。”他们还提到,“同样的技术也用于调用非LinkedIn的API,如Bing搜索和新闻。”这种方法不仅提高了LLM的功能性,还增强了其与现有技术基础设施的整合能力,使得LLM能够更广泛地应用于企业的各个方面。

以上是LinkedIn在利用大型语言模型服务十亿用户中的收获的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1675
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles