首页 科技周边 人工智能 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

Apr 19, 2024 pm 09:40 PM
git 工程 genn2n

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

我们网站的AIxiv专栏是关于学术和技术内容的栏目。过去几年来,我们网站的AIxiv专栏已经收到超过2000篇内容,覆盖全球各大高校与企业的顶级实验室,有助于推进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或联系报道。投稿邮箱为liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。


来自香港科技大学,清华大学的研究者提出了「GenN2N」,一个统一的生成式 NeRF-to-NeRF 转换框架,适用于各种 NeRF 转换任务,例如文字驱动的 NeRF 编辑、着色、超分辨率、修复等,性能均表现极其出色!CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

  • 论文地址:https://arxiv.org/abs/2404.02788
  • 论文主页:https://xiangyueliu.github.io/GenN2N/
  • Github 地址:https://github.com/Lxiangyue/GenN2N
  • 论文标题:GenN2N: Generative NeRF2NeRF Translation

近年来,神经辐射场(NeRF)因其紧凑、高质量、多功能性在三维重建、三维生成和新视角合成领域引起了广泛关注。然而,一旦创建了 NeRF 场景,这些方法通常缺乏对生成几何和外观的进一步控制。因此,NeRF 编辑(NeRF Editing)最近成为了一个值得关注的研究重点。

目前的 NeRF 编辑方法通常是针对特定任务的,例如 NeRF 的文本驱动编辑、超分辨率、修复和着色。这些方法需要大量的特定任务领域知识。而在 2D 图像编辑领域,开发通用的图像到图像(Image-to-image)转换方法成为一种趋势,例如利用 2D 生成模型 Stable Difussion 支持多功能的图像编辑。因此,我们提出了利用基础的 2D 生成模型进行通用的 NeRF 编辑。

随之而来的挑战是 NeRF 和 2D 图像之间的表示差距,尤其是图像编辑器通常会为不同视角生成多种不一致的编辑。最近的一种基于文本的 NeRF 编辑方法 Instruct-NeRF2NeRF 对此进行了探究。其采用 “渲染 - 编辑 - 聚合” 的流程,通过逐步渲染多视角图像、编辑这些图像,将编辑图像聚合到 NeRF 中逐步更新 NeRF 场景。然而这种编辑方法,针对特定的编辑需求,经过大量的优化,只能生成一种特定编辑的结果,如果用户不满意则需要反复迭代尝试。

因此,我们提出了「GenN2N」,一种适用于多种 NeRF 编辑任务的 NeRF-to-NeRF 通用框架,其核心在于用生成的方式来刻画编辑过程多解性,使其可以借助生成式编辑轻松产生大量符合要求的编辑结果供用户挑选。

在 GenN2N 的核心部分,1)引入了 3D VAE-GAN 的生成式框架,使用 VAE 表征整个编辑空间,来学习与一组输入的 2D 编辑图像对应的所有可能的 3D NeRF 编辑分布,并用 GAN 为编辑 NeRF 的不同视图提供合理的监督,确保编辑结果的真实性,2)使用对比学习解耦编辑内容和视角,确保不同视角间的编辑内容一致性,3)在推理时,用户简单地从条件生成模型中随机地采样出多个编辑码,就可以生成与编辑目标对应的各种 3D 编辑结果。

相比于各种 NeRF 编辑任务的 SOTA 方法(ICCV2023 Oral 等),GenN2N 在编辑质量、多样性、效率等方面均优于已有方法。

方法介绍

我们首先进行 2D 图像编辑,然后将这些 2D 编辑提升到 3D NeRF 来实现生成式的 NeRF-to-NeRF 的转换。

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

A. 隐式蒸馏(Latent Distill)

我们用 Latent Distill Module 作为 VAE 的 encoder,为每张编辑图像学习一个隐式的编辑码,在 NeRF-to-NeRF 转换中通过此编辑码控制生成的内容。所有编辑码在 KL loss 的约束下服从一个良好的正态分布,以便更好地采样。为了解耦编辑内容和视角,我们精心设计了对比学习,鼓励相同编辑风格视角不同的图片的编辑码相近,不同编辑风格但视角相同的图片的编辑码互相远离。

B.NeRF-to-NeRF 的转换(Translated NeRF)

我们用 NeRF-to-NeRF Translation 作为 VAE 的 decoder,其以编辑码作为输入,将原始的 NeRF 修改为一个转换 NeRF。我们在原 NeRF 网络隐藏层之间添加了残差层,这些残差层以编辑码作为输入来调制隐藏层神经元,使得转换 NeRF 既能够保留原本 NeRF 的信息,又可以根据编辑码来控制转换 3D 内容。同时,NeRF-to-NeRF Translation 也作为生成器参与生成对抗训练。通过生成而非优化的方式,使得我们可以一次性得到多种转换结果,显著提升了 NeRF 转换效率和结果多样性。

C. 条件判别器(Conditional Discriminator)

转换 NeRF 的渲染图片构成了需要判别的生成空间,这些图片的编辑风格、渲染视角各异,导致生成空间非常复杂。因此我们提供一个 condition 作为判别器的额外信息。具体而言,判别器在鉴别生成器的渲染图片CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务(负样本)或训练数据中的编辑图片CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务(正样本)时,我们都从训练数据中再挑选一张相同视角的编辑图片CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务作为条件,这使得判别器在鉴别正负样本时不会受到视角因素的干扰。

D. 推理(Inference)

在 GenN2N 优化后,用户可以从正态分布中随机采样出编辑码,输入转换 NeRF 即可生成出编辑后的高质量、多视角一致性的 3D NeRF 场景。

实验

我们在多种 NeRF-to-NeRF 任务上进行了大量的实验,包括 NeRF 文本驱动编辑、着色、超分辨率、修复等。实验结果展示了 GenN2N 卓越的编辑质量、多视角一致性、生成的多样性和编辑效率。

A. 基于文本的 NeRF 编辑CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务B.NeRF 着色 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务C.NeRF 超分辨率 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务D.NeRF 修复 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务
对比实验

我们的方法与各种特定 NeRF 任务的 SOTA 方法进行了定性和定量对比(包括文本驱动编辑、着色、超分辨率和修复等)。结果表明,GenN2N 作为一个通用框架,其表现与特定任务 SOTA 相当或者更好,同时编辑结果具有更强的多样性(如下是 GenN2N 与 Instruct-NeRF2NeRF 在基于文本的 NeRF 编辑任务上的对比)。

A. 基于文本的 NeRF 编辑CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务
了解更多实验、方法内容,请参考论文主页。

团队介绍

该论文来自香港科技大学谭平团队、清华大学 3DVICI Lab、上海人工智能实验室和上海期智研究院,论文的作者为香港科技大学学生刘襄阅,清华大学学生薛晗,香港科技大学学生罗堃铭,指导老师为清华大学弋力老师和香港科技大学谭平老师。

以上是CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

git怎么更新代码 git怎么更新代码 Apr 17, 2025 pm 04:45 PM

更新 git 代码的步骤:检出代码:git clone https://github.com/username/repo.git获取最新更改:git fetch合并更改:git merge origin/master推送更改(可选):git push origin master

git怎么下载项目到本地 git怎么下载项目到本地 Apr 17, 2025 pm 04:36 PM

要通过 Git 下载项目到本地,请按以下步骤操作:安装 Git。导航到项目目录。使用以下命令克隆远程存储库:git clone https://github.com/username/repository-name.git

git怎么合并代码 git怎么合并代码 Apr 17, 2025 pm 04:39 PM

Git 代码合并过程:拉取最新更改以避免冲突。切换到要合并的分支。发起合并,指定要合并的分支。解决合并冲突(如有)。暂存和提交合并,提供提交消息。

git下载不动怎么办 git下载不动怎么办 Apr 17, 2025 pm 04:54 PM

解决 Git 下载速度慢时可采取以下步骤:检查网络连接,尝试切换连接方式。优化 Git 配置:增加 POST 缓冲区大小(git config --global http.postBuffer 524288000)、降低低速限制(git config --global http.lowSpeedLimit 1000)。使用 Git 代理(如 git-proxy 或 git-lfs-proxy)。尝试使用不同的 Git 客户端(如 Sourcetree 或 Github Desktop)。检查防火

git commit怎么用 git commit怎么用 Apr 17, 2025 pm 03:57 PM

Git Commit 是一种命令,将文件变更记录到 Git 存储库中,以保存项目当前状态的快照。使用方法如下:添加变更到暂存区域编写简洁且信息丰富的提交消息保存并退出提交消息以完成提交可选:为提交添加签名使用 git log 查看提交内容

如何解决PHP项目中的高效搜索问题?Typesense助你实现! 如何解决PHP项目中的高效搜索问题?Typesense助你实现! Apr 17, 2025 pm 08:15 PM

在开发一个电商网站时,我遇到了一个棘手的问题:如何在大量商品数据中实现高效的搜索功能?传统的数据库搜索效率低下,用户体验不佳。经过一番研究,我发现了Typesense这个搜索引擎,并通过其官方PHP客户端typesense/typesense-php解决了这个问题,大大提升了搜索性能。

git怎么更新本地代码 git怎么更新本地代码 Apr 17, 2025 pm 04:48 PM

如何更新本地 Git 代码?用 git fetch 从远程仓库拉取最新更改。用 git merge origin/<远程分支名称> 将远程变更合并到本地分支。解决因合并产生的冲突。用 git commit -m "Merge branch <远程分支名称>" 提交合并更改,应用更新。

git怎么删除仓库 git怎么删除仓库 Apr 17, 2025 pm 04:03 PM

要删除 Git 仓库,请执行以下步骤:确认要删除的仓库。本地删除仓库:使用 rm -rf 命令删除其文件夹。远程删除仓库:导航到仓库设置,找到“删除仓库”选项,确认操作。

See all articles