目录
方法
实验
首页 科技周边 人工智能 两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

Mar 27, 2024 pm 03:17 PM
ai 训练

广阔的战场,风暴兵在奔跑……

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

prompt:Wide shot of battlefield, stormtroopers running...

这段时长达1200帧的2分钟视频是由文本生成视频(text-to-video)模型生成的。尽管AI的痕迹仍然显而易见,但其中的人物和场景展现出相当不错的一致性。

这是如何办到的呢?要知道,虽然近些年文生视频技术的生成质量和文本对齐质量都已经相当出色,但大多数现有方法都聚焦于生成短视频(通常是 16 或 24 帧长度)。然而,适用于短视频的现有方法通常无法用于长视频(≥ 64 帧)。

即使是生成短序列,通常也需要成本高昂的训练,比如训练步数超过 260K,批大小超过 4500。如果不在更长的视频上进行训练,通过短视频生成器来制作长视频,得到的长视频通常质量不佳。而现有的自回归方法(通过使用短视频后几帧生成新的短视频,进而合成长视频)也存在场景切换不一致等一些问题。

为了弥补现有方法的不足,Picsart AI Research等多个机构联合提出了一种新的文生视频方法:StreamingT2V。这种方法采用自回归技术,并结合长短期记忆模块,使其能够生成时间连贯性强的长视频。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

  • 论文标题:StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
  • 论文地址:https://arxiv.org/abs/2403.14773
  • 项目地址:https://streamingt2v.github.io/

如下是一段 600 帧 1 分钟的视频生成结果,可以看到蜜蜂和花朵都有非常出色的一致性:

因此,团队提出了条件注意力模块(CAM)。CAM利用其注意力机制,能够有效地整合之前帧的信息来生成新的帧,并且能够自如地处理新帧中的运动情况,而不受之前帧结构或形状的限制。

而为了解决生成的视频中人与物外观变化的问题,该团队又提出了外观保留模块(APM):其可从一张初始图像(锚帧)提取对象或全局场景的外观信息,并使用该信息调节所有视频块的视频生成过程。

为了进一步提升长视频生成的质量和分辨率,该团队针对自回归生成任务对一个视频增强模型进行了改进。为此,该团队选择了一个高分辨率文生视频模型并使用了 SDEdit 方法来提升连续 24 帧(其中有 8 帧重叠帧)视频块的质量。

为了使视频块增强过渡变得平滑,他们还设计了一种随机混合方法,能以无缝方式混合重叠的增强过的视频块。

方法

首先,生成 5 秒时长的 256 × 256 分辨率的视频(16fps),然后将其增强至更高的分辨率(720 × 720)。图 2 展示了其完整的工作流程。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

长视频生成部分由初始化阶段(Initialization Stage)和流式文生视频阶段(Streaming T2V Stage)构成。

其中,初始化阶段是使用一个预训练的文生视频模型(比如可以使用 Modelscope)来生成第一个 16 帧的视频块;而流式文生视频阶段则是以自回归方式生成后续帧的新内容。

对于自回归过程(见图 3),该团队新提出的 CAM 可以利用之前视频块最后 8 帧的短期信息,实现块之间的无缝切换。另外,他们还会使用新提出的 APM 模块来提取一张固定锚帧的长期信息,使自回归过程能稳健地应对事物和场景细节在生成过程中的变化。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

在生成得到了长视频(80、240、600、1200 或更多帧)之后,他们再通过流式优化阶段(Streaming Refinement Stage)来提升视频质量。这个过程会以自回归方式使用一个高分辨率文生短视频模型(如可使用 MS-Vid2Vid-XL),再搭配上新提出的用于无缝视频块处理的随机混合方法。而且后一步无需额外的训练,这使得该方法无需较高的计算成本。

条件注意力模块

首先,将所使用的预训练文生(短)视频模型记为 Video-LDM。注意力模块(CAM)的构成是一个特征提取器、一个向 Video-LDM UNet 注入的特征注入器。

其中特征提取器使用了逐帧的图像编码器,之后是与 Video-LDM UNet 直到中间层一直使用的一样的编码器层(并通过 UNet 的权重初始化)。

对于特征注入,这里的设计则是让 UNet 中的每个长程跳跃连接通过交叉注意力关注 CAM 生成的相应特征。

外观保留模块

APM 模块可通过使用固定锚帧中的信息来将长期记忆整合进视频生成过程中。这有助于维持视频块生成过程中的场景和对象特征。

为了让 APM 能平衡处理锚帧和文本指令给出的引导信息,该团队做出了两点改进:(1)将锚帧的 CLIP 图像 token 与文本指令的 CLIP 文本 token 混合起来;(2)为每个交叉注意力层引入了一个权重来使用交叉注意力。

自回归视频增强

为了自回归地增强 24 帧的生成视频块,这里使用的是高分辨率(1280x720)的文生(短)视频模型(Refiner Video-LDM,见图 3)。这个过程的做法是首先向输入视频块加入大量噪声,然后再使用这个文生视频扩散模型来进行去噪处理。

不过,这种方法不足以解决视频块之间的过渡不匹配的问题。

为此,该团队的解决方案是随机混合方法。具体详情请参阅原论文。

实验

在实验中,该团队使用的评估指标包括:用于评估时间一致性的 SCuts 分数、用于评估运动量和扭变误差的运动感知扭变误差(MAWE)、用于评估文本对齐质量的 CLIP 文本图像相似度分数(CLIP)、美学分数(AE)。

消融研究

为了评估各种新组件的有效性,该团队从验证集中随机采样 75 个 prompt 执行了消融研究。

用于条件处理的 CAM:CAM 能帮助模型生成更一致的视频,其 SCuts 分数比相比较的其它基线模型低 88%。

长期记忆:图 6 表明长期记忆能在自回归生成过程中极大帮助维持对象和场景的特征稳定。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

在一个定量评估指标(人再识别分数)上,APM 实现了 20% 的提升。

用于视频增强的随机混合:与其它两个基准相比,随机混合能带来显著的质量提升,从图 4 中也能看到:StreamingT2V 可以得到更平滑的过渡。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

StreamingT2V 对比基线模型

该团队通过定量和定性评估比较了集成上述改进的 StreamingT2V 与多种模型,包括使用自回归方法的图像到视频方法 I2VGen-XL、SVD、DynamiCrafter-XL、SEINE,视频到视频方法 SparseControl,文本到长视频方法 FreeNoise。

定量评估:从表 8 可以看出,在测试集上的定量评估表明,StreamingT2V 在无缝视频块过渡和运动一致性方面的表现最佳。新方法的 MAWE 分数也显着优于其它所有方法 —— 甚至比第二好的 SEINE 低 50% 以上。 SCuts 分数上也有类似表现。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

此外,在生成视频的单帧质量上,StreamingT2V 仅略逊于 SparseCtrl。这表明这个新方法能够生成高质量的长视频,并且比其它对比方法具有更好的时间一致性和运动动态。

定性评估:下图展示了 StreamingT2V 与其它方法的效果比较,可以看出新方法能在保证视频动态效果的同时维持更好的一致性。

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

 更多研究细节,可参考原论文。

以上是两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

C  中的chrono库如何使用? C 中的chrono库如何使用? Apr 28, 2025 pm 10:18 PM

使用C 中的chrono库可以让你更加精确地控制时间和时间间隔,让我们来探讨一下这个库的魅力所在吧。C 的chrono库是标准库的一部分,它提供了一种现代化的方式来处理时间和时间间隔。对于那些曾经饱受time.h和ctime折磨的程序员来说,chrono无疑是一个福音。它不仅提高了代码的可读性和可维护性,还提供了更高的精度和灵活性。让我们从基础开始,chrono库主要包括以下几个关键组件:std::chrono::system_clock:表示系统时钟,用于获取当前时间。std::chron

解密Gate.io战略升级:MeMebox 2.0如何重新定义加密资产管理? 解密Gate.io战略升级:MeMebox 2.0如何重新定义加密资产管理? Apr 28, 2025 pm 03:33 PM

MeMebox 2.0通过创新架构和性能突破重新定义了加密资产管理。1) 它解决了资产孤岛、收益衰减和安全与便利悖论三大痛点。2) 通过智能资产枢纽、动态风险管理和收益增强引擎,提升了跨链转账速度、平均收益率和安全事件响应速度。3) 为用户提供资产可视化、策略自动化和治理一体化,实现了用户价值重构。4) 通过生态协同和合规化创新,增强了平台的整体效能。5) 未来将推出智能合约保险池、预测市场集成和AI驱动资产配置,继续引领行业发展。

全球币圈十大交易所有哪些 排名前十的货币交易平台最新版 全球币圈十大交易所有哪些 排名前十的货币交易平台最新版 Apr 28, 2025 pm 08:09 PM

全球十大加密货币交易平台包括Binance、OKX、Gate.io、Coinbase、Kraken、Huobi Global、Bitfinex、Bittrex、KuCoin和Poloniex,均提供多种交易方式和强大的安全措施。

靠谱的数字货币交易平台推荐 全球十大数字货币交易所排行榜2025 靠谱的数字货币交易平台推荐 全球十大数字货币交易所排行榜2025 Apr 28, 2025 pm 04:30 PM

靠谱的数字货币交易平台推荐:1. OKX,2. Binance,3. Coinbase,4. Kraken,5. Huobi,6. KuCoin,7. Bitfinex,8. Gemini,9. Bitstamp,10. Poloniex,这些平台均以其安全性、用户体验和多样化的功能着称,适合不同层次的用户进行数字货币交易

怎样在C  中测量线程性能? 怎样在C 中测量线程性能? Apr 28, 2025 pm 10:21 PM

在C 中测量线程性能可以使用标准库中的计时工具、性能分析工具和自定义计时器。1.使用库测量执行时间。2.使用gprof进行性能分析,步骤包括编译时添加-pg选项、运行程序生成gmon.out文件、生成性能报告。3.使用Valgrind的Callgrind模块进行更详细的分析,步骤包括运行程序生成callgrind.out文件、使用kcachegrind查看结果。4.自定义计时器可灵活测量特定代码段的执行时间。这些方法帮助全面了解线程性能,并优化代码。

排名前十的虚拟币交易app有哪 最新数字货币交易所排行榜 排名前十的虚拟币交易app有哪 最新数字货币交易所排行榜 Apr 28, 2025 pm 08:03 PM

Binance、OKX、gate.io等十大数字货币交易所完善系统、高效多元化交易和严密安全措施严重推崇。

排名靠前的货币交易平台有哪些 最新虚拟币交易所排名榜前10 排名靠前的货币交易平台有哪些 最新虚拟币交易所排名榜前10 Apr 28, 2025 pm 08:06 PM

目前排名前十的虚拟币交易所:1.币安,2. OKX,3. Gate.io,4。币库,5。海妖,6。火币全球站,7.拜比特,8.库币,9.比特币,10。比特戳。

C  中的字符串流如何使用? C 中的字符串流如何使用? Apr 28, 2025 pm 09:12 PM

C 中使用字符串流的主要步骤和注意事项如下:1.创建输出字符串流并转换数据,如将整数转换为字符串。2.应用于复杂数据结构的序列化,如将vector转换为字符串。3.注意性能问题,避免在处理大量数据时频繁使用字符串流,可考虑使用std::string的append方法。4.注意内存管理,避免频繁创建和销毁字符串流对象,可以重用或使用std::stringstream。

See all articles