[转] INSERT INTO ... SELECT Performance with Innodb tables_MySQL
Author: | peter |
---|---|
url: | http://www.mysqlperformanceblog.com/2006/07/12/insert-into-select-performance-with-innodb-tables/ |
Everyone using Innodb tables probably got use to the fact Innodb tables perform non locking reads, meaning unless you use some modifiers such as LOCK IN SHARE MODE or FOR UPDATE, SELECT statements will not lock any rows while running.
This is generally correct, however there a notable exception - INSERT INTO table1 SELECT * FROM table2. This statement will perform locking read (shared locks) for table2 table. It also applies to similar tables with where clause and joins. It is important for tables which is being read to be Innodb - even if writes are done in MyISAM table.
So why was this done, being pretty bad for MySQL Performance and concurrency ? The reason is - replication. In MySQL before 5.1 replication is statement based which means statements replied on the master should cause the same effect as on the slave. If Innodb would not locking rows in source table other transaction could modify the row and commit before transaction which is running INSERT .. SELECT statement. This would make this transaction to be applied on the slave before INSERT... SELECT statement and possibly result in different data than on master. Locking rows in the source table while reading them protects from this effect as other transaction modifies rows before INSERT ... SELECT had chance to access it it will also be modified in the same order on the slave. If transaction tries to modify the row after it was accessed and so locked by INSERT ... SELECT, transaction will have to wait until statement is completed to make sure it will be executed on the slave in proper order. Gets pretty complicated ? Well all you need to know it had to be done fore replication to work right in MySQL before 5.1.
In MySQL 5.1 this as well as few other problems should be solved by row based replication. I'm however yet to give it real stress tests to see how well it performs :)
One more thing to keep into account - INSERT ... SELECT actually performs read in locking mode and so partially bypasses versioning and retrieves latest committed row. So even if you're operation in REPEATABLE-READ mode, this operation will be performed in READ-COMMITTED mode, potentially giving different result compared to what pure SELECT would give. This by the way applies to SELECT .. LOCK IN SHARE MODE and SELECT ... FOR UPDATE as well.
One my ask what is if I'm not using replication and have my binary log disabled ? If replication is not used you can enable innodb_locks_unsafe_for_binlog option, which will relax locks which Innodb sets on statement execution, which generally gives better concurrency. However as the name says it makes locks unsafe fore replication and point in time recovery, so use innodb_locks_unsafe_for_binlog option with caution.
Note disabling binary logs is not enough to trigger relaxed locks. You have to set innodb_locks_unsafe_for_binlog=1 as well. This is done so enabling binary log does not cause unexpected changes in locking behavior and performance problems. You also can use this option with replication sometimes, if you really know what you're doing. I would not recommend it unless it is really needed as you might not know which other locks will be relaxed in future versions and how it would affect your replication.
So what are safe workarounds if you're using replication ?
The most general one is to use: PLAIN TEXT SQL:
- SELECT * FROM tbl1 INFO OUTFILE '/tmp/tbl1.txt';
- LOAD DATA INFILE '/tmp/tbl1.txt' INTO TABLE tbl2;
instead of: PLAIN TEXT SQL:
- INSERT INTO tbl2 SELECT * FROM tbl1;
INSERT ... INTO OUTFILE does not have to set extra locks.
If you use this aproach make sure to delete file after it is loaded back (it has to be done outside of MySQL Server) as otherwise the script will fail second time.
If you need result to be even closer to one of INSERT ... SELECT you may execute this transaction in READ-COMMITTED isolation mode.
Other workarounds are less general purpose. For example if you're doing batch processing which is well indexed you might chop transactions and process rows by small bulks, which do not cause long enough locks to cause the problems.
To complete this article I should show how wait caused by this statement will look in SHOW INNODB STATUS:
<pre class="brush:php;toolbar:false">TRANSACTION 0 42304626, ACTIVE 14 sec, process no 29895, OS thread id 2894768 updating or deleting<br />mysql tables in use 1, locked 1<br />LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 1<br />MySQL thread id 1794760, query id 6994946 localhost root Updating<br />update sample set j=0 where i=5<br />TRX HAS BEEN WAITING 14 SEC FOR THIS LOCK TO BE GRANTED:<br />RECORD LOCKS space id 0 page no 33504 n bits 328 index `j` of table `test/sample` trx id 0 42304626 lock_mode X locks rec but not gap waiting<br />Record lock, heap no 180 PHYSICAL RECORD: n_fields 2; compact format; info bits 0<br />0: len 30; hex 306338386465646233353863643936633930363962373361353736383261; asc 0c88dedb358cd96c9069b73a57682a;...(truncated); 1: len 4; hex 00000005; asc ;;<br /><br />TRANSACTION 0 42304624, ACTIVE 37 sec, process no 29895, OS thread id 4058032 fetching rows, thread declared inside InnoDB 3<br />mysql tables in use 1, locked 1<br />2539 lock struct(s), heap size 224576<br />MySQL thread id 1794751, query id 6994931 localhost root Sending data<br />insert into test select * from sample
As you can see INSERT... SELECT has a lot of lock structs, which means it has locked a lot of rows. "fetching rows" of course means it is still going. In this case write is done to MyISAM table so we'll not see any write activity.
Other transaction which happes to be simple primary key update is waiting on sample table for this record to be unlocked.

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MySQL在Web应用中的主要作用是存储和管理数据。1.MySQL高效处理用户信息、产品目录和交易记录等数据。2.通过SQL查询,开发者能从数据库提取信息生成动态内容。3.MySQL基于客户端-服务器模型工作,确保查询速度可接受。

InnoDB使用redologs和undologs确保数据一致性和可靠性。1.redologs记录数据页修改,确保崩溃恢复和事务持久性。2.undologs记录数据原始值,支持事务回滚和MVCC。

MySQL在数据库和编程中的地位非常重要,它是一个开源的关系型数据库管理系统,广泛应用于各种应用场景。1)MySQL提供高效的数据存储、组织和检索功能,支持Web、移动和企业级系统。2)它使用客户端-服务器架构,支持多种存储引擎和索引优化。3)基本用法包括创建表和插入数据,高级用法涉及多表JOIN和复杂查询。4)常见问题如SQL语法错误和性能问题可以通过EXPLAIN命令和慢查询日志调试。5)性能优化方法包括合理使用索引、优化查询和使用缓存,最佳实践包括使用事务和PreparedStatemen

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。 MySQL以其高性能、可扩展性和跨平台支持着称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL适合小型和大型企业。1)小型企业可使用MySQL进行基本数据管理,如存储客户信息。2)大型企业可利用MySQL处理海量数据和复杂业务逻辑,优化查询性能和事务处理。

MySQL索引基数对查询性能有显着影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL的基本操作包括创建数据库、表格,及使用SQL进行数据的CRUD操作。1.创建数据库:CREATEDATABASEmy_first_db;2.创建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入数据:INSERTINTObooks(title,author,published_year)VA

MySQL适合Web应用和内容管理系统,因其开源、高性能和易用性而受欢迎。1)与PostgreSQL相比,MySQL在简单查询和高并发读操作上表现更好。2)相较Oracle,MySQL因开源和低成本更受中小企业青睐。3)对比MicrosoftSQLServer,MySQL更适合跨平台应用。4)与MongoDB不同,MySQL更适用于结构化数据和事务处理。
