目录
日志级别" >1. 自定义日志级别
2. 使用不同处理器
3. 使用过滤器
4. 格式化日志输出
5. 使用上下文处理器
6. 使用字典配置
7. 集成第三方包
多线程支持" >8. 使用多线程支持
9. 记录异常
10. 使用扩展日志记录
首页 后端开发 Python教程 掌握 Python Logging 模块的 10 个技巧

掌握 Python Logging 模块的 10 个技巧

Feb 21, 2024 am 09:30 AM
python 调试 logging 可维护性

掌握 Python Logging 模块的 10 个技巧

除了默认的 DEBUG、INFO、WARNING、ERROR 和 CRITICAL 级别,您可以创建自定义级别。这对于区分不同严重程度的事件非常有用。

import logging

# 创建自定义日志级别
CUSTOM_LEVEL = logging.INFO + 5
logging.addLevelName(CUSTOM_LEVEL, "CUSTOM")

# 创建一个 Logger 并设置自定义日志级别
logger = logging.getLogger("my_logger")
logger.setLevel(CUSTOM_LEVEL)
登录后复制

2. 使用不同处理器

处理器负责将日志事件发送到特定目标,如文件或控制台。您可以自定义处理器以满足您的特定需求。

import logging

# 创建一个 FileHandler 并设置日志文件名
file_handler = logging.FileHandler("my_log.txt")

# 创建一个 StreamHandler 并输出到控制台
stream_handler = logging.StreamHandler()

# 将处理器添加到 Logger
logger = logging.getLogger("my_logger")
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
登录后复制

3. 使用过滤器

过滤器允许您根据特定条件过滤日志事件。这对于仅记录感兴趣的事件非常有用。

import logging

# 创建一个过滤器以过滤 INFO 级别以上的事件
info_filter = logging.Filter()
info_filter.filter = lambda record: record.levelno >= logging.INFO

# 将过滤器添加到 Logger
logger = logging.getLogger("my_logger")
logger.addFilter(info_filter)
登录后复制

4. 格式化日志输出

您可以自定义日志事件的格式,以提供所需的信息。

import logging

# 创建一个 FORMatter 并设置格式字符串
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")

# 将 Formatter 添加到处理器
handler = logging.StreamHandler()
handler.setFormatter(formatter)

# 将处理器添加到 Logger
logger = logging.getLogger("my_logger")
logger.addHandler(handler)
登录后复制

5. 使用上下文处理器

上下文处理器允许您在日志记录时添加额外的信息。这对于跟踪请求或事务中的上下文很有用。

import logging
from contextlib import contextmanager

# 创建一个上下文处理器以添加请求 ID
@contextmanager
def request_id_context(request_id):
previous_request_id = logging.currentframe().f_locals.get("request_id")
try:
logging.currentframe().f_locals["request_id"] = request_id
yield
finally:
logging.currentframe().f_locals["request_id"] = previous_request_id

# 使用上下文处理器
logger = logging.getLogger("my_logger")
with request_id_context("1234"):
logger.info("Received request")
登录后复制

6. 使用字典配置

您可以使用字典轻松地配置 Logging 模块。

import logging

# 配置字典
logging_config = {
"version": 1,
"formatters": {
"default": {
"format": "%(asctime)s - %(levelname)s - %(message)s"
}
},
"handlers": {
"file": {
"class": "logging.FileHandler",
"filename": "my_log.txt",
"formatter": "default",
},
"console": {
"class": "logging.StreamHandler",
"formatter": "default",
}
},
"loggers": {
"my_logger": {
"handlers": ["file", "console"],
"level": "INFO",
}
}
}

# 从字典配置 Logging
logging.config.dictConfig(logging_config)
登录后复制

7. 集成第三方包

Logging 模块可以与第三方包集成,例如 Sentry 或 Rollbar。这使您可以轻松地将日志事件发送到远程服务。

import logging
import sentry_sdk

# 初始化 Sentry 并与 Logging 集成
sentry_sdk.init()
logging.basicConfig(level=logging.INFO, handlers=[sentry_sdk.handler.SentryHandler()])
登录后复制

Logging 模块支持多线程应用程序。它使用线程本地存储来确保每个线程都有其自己的独立日志处理器。

import logging
import threading

# 创建线程安全的 Logger
logger = logging.getLogger("my_logger")

# 创建一个线程并向 Logger 记录
def thread_function():
logger.info("Executing in a separate thread")

# 启动线程
thread = threading.Thread(target=thread_function)
thread.start()
登录后复制

9. 记录异常

Logging 模块可以自动记录发生的异常。

import logging

# 创建一个 Logger
logger = logging.getLogger("my_logger")

# 记录一个异常
try:
raise Exception("An error occurred")
except Exception as e:
logger.exception(e)
登录后复制

10. 使用扩展日志记录

python 3.8 引入了对扩展日志记录的支持。这允许您创建自定义日志记录函数和处理程序。

import logging

# 创建一个自定义日志记录函数
def my_log_function(logger, level, msg, *args, **kwargs):
# 您的自定义日志记录逻辑

# 添加自定义日志记录函数到 Logger
logger = logging.getLogger("my_logger")
logger.addHandler(logging.NullHandler())
logger.addFilter(logging.Filter())
logger.log = my_log_function
登录后复制

以上是掌握 Python Logging 模块的 10 个技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1672
14
CakePHP 教程
1428
52
Laravel 教程
1332
25
PHP教程
1276
29
C# 教程
1256
24
PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

sublime怎么运行代码python sublime怎么运行代码python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

Golang vs. Python:性能和可伸缩性 Golang vs. Python:性能和可伸缩性 Apr 19, 2025 am 12:18 AM

Golang在性能和可扩展性方面优于Python。1)Golang的编译型特性和高效并发模型使其在高并发场景下表现出色。2)Python作为解释型语言,执行速度较慢,但通过工具如Cython可优化性能。

vscode在哪写代码 vscode在哪写代码 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

notepad 怎么运行python notepad 怎么运行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

See all articles