目录
问题内容
解决方法
首页 后端开发 Golang 无法使用自定义 crypto.Signer 实现生成 X.509 证书

无法使用自定义 crypto.Signer 实现生成 X.509 证书

Feb 10, 2024 pm 08:42 PM
加密货币

无法使用自定义 crypto.Signer 实现生成 X.509 证书

php小编柚子在这里为大家介绍一个关于生成 X.509 证书的问题。有时候在使用自定义 crypto.Signer 实现生成证书的过程中,可能会遇到一个无法使用的问题。这个问题可能会让开发者感到困惑,不知道如何解决。在本文中,我们将探讨这个问题的原因,并提供一些解决方案,以帮助开发者顺利生成自己的 X.509 证书。

问题内容

我正在尝试根据存储在 hsm 中的 rsa 密钥对生成 x.509 证书。我使用此 pkcs #11 实现与我的 hsm 进行通信。

由于我的加密对象存储在后者中,如果我想要执行的操作需要私钥(例如签名),我必须实现 crypto.signer 接口才能“访问私钥” 。这是这个实现。

type rsasigner struct {
    privatekey p11.privatekey
    publickey  *rsa.publickey
}

func (s rsasigner) public() crypto.publickey {
    return s.publickey
}

func (s rsasigner) sign(_ io.reader, digest []byte, _ crypto.signeropts) ([]byte, error) {
    return s.privatekey.sign(pkcs11.mechanism{mechanism: pkcs11.ckm_sha512_rsa_pkcs}, digest)
}

func newrsasigner(privatekey p11.privatekey) (*rsasigner, error) {
    var (
        modulus, publicexponent []byte
        err                     error
    )

    // retrieve modulus n from the private key
    // reminder: n = p * q
    modulus, err = p11.object(privatekey).attribute(pkcs11.cka_modulus)
    if err != nil {
        return nil, err
    }

    // retrieve public exponent (e: "always" 65537) from the private key
    // reminder: φ(n) = (p - 1) * (q - 1), e such that 1 < e < φ(n) and e and φ(n) are co prime
    publicexponent, err = p11.object(privatekey).attribute(pkcs11.cka_public_exponent)
    if err != nil {
        return nil, err
    }

    // public key is (e, n)
    publickey := &rsa.publickey{
        n: new(big.int).setbytes(modulus),
        e: int(big.newint(0).setbytes(publicexponent).uint64()),
    }

    return &rsasigner{privatekey: privatekey, publickey: publickey}, nil
}
登录后复制

这个实现有效。例如,要创建 csr,createcertificaterequest 函数需要私钥来签署 csr(priv any 参数),这是我提供 rsasigner 实例的地方。

createcertificate函数有些类似,参数pub是要生成的证书的公钥,priv是签名者的私钥。

在下面的代码中,我尝试生成自签名的x.509证书,因此根据api,templateparent参数是相同的。

func (t *token) x509(id, objecttype, output string) ([]time.duration, error) {
    startfunction := time.now()

    var (
        keytype            int
        privatekeytemplate []*pkcs11.attribute
        privatekeyobject   p11.object
        err                error
        timings            []time.duration
        signer             *rsasigner
        cert               []byte
        file               *os.file
        writtenbytes       int
    )

    objecttype = strings.tolower(objecttype)

    if objecttype != "rsa" && objecttype != "ec" {
        logger.fatalf("%s: unrecognized type, it can only be equal to rsa or ec", objecttype)
    }

    switch objecttype {
    case "rsa":
        keytype = pkcs11.ckk_rsa
    case "ec":
        keytype = pkcs11.ckk_ec
    }

    // creation of the template to find the private key based on the given id (pkcs #11 attribute cka_id)
    privatekeytemplate = []*pkcs11.attribute{
        pkcs11.newattribute(pkcs11.cka_key_type, keytype),
        pkcs11.newattribute(pkcs11.cka_class, pkcs11.cko_private_key),
        pkcs11.newattribute(pkcs11.cka_id, id),
    }

    startfindobject := time.now()
    privatekeyobject, err = t.session.findobject(privatekeytemplate)
    timings = append(timings, time.since(startfindobject))
    if err != nil {
        return nil, err
    }

    // creation of the x.509 certificate template
    certtemplate := &x509.certificate{
        serialnumber: big.newint(2023),
        subject: pkix.name{
            commonname: "test",
        },
        signaturealgorithm: x509.sha512withrsa,
        notbefore:          time.now(),
        notafter:           time.now().adddate(1, 0, 0),
    }

    // instantiate the rsasigner with the found private key object
    signer, err = newrsasigner(p11.privatekey(privatekeyobject))
    if err != nil {
        return nil, err
    }

    startcreatecert := time.now()
    cert, err = x509.createcertificate(rand.reader, certtemplate, certtemplate, signer.publickey, signer)
    timings = append(timings, time.since(startcreatecert))
    if err != nil {
        return nil, err
    }

    file, err = os.create(output)
    if err != nil {
        return nil, err
    }

    writtenbytes, err = file.write(cert)
    if err != nil {
        return nil, err
    }

    logger.printf("wrote %d bytes in %s", writtenbytes, output)

    return append(timings, time.since(startfunction)), nil
}
登录后复制

无论密钥类型(rsa 或 ec)如何,此函数都会返回以下错误。

FATA[2022-12-22 10:48:50] x509: signature over certificate returned by signer is invalid: crypto/rsa: verification error
登录后复制

如果 crypto.signer 实现未正确完成,则会返回此错误。

我实现了 crypto.signer 来尝试使用椭圆曲线上的密钥对执行相同的操作,但错误是相同的。

我还在 sign 函数中尝试了不同的哈希算法,但它没有改变任何东西。

该错误似乎来自 crypto.signer 的实现,尽管它可以用于生成 csr。

解决方法

尽管我几个月前就已经找到了这个问题的解决方案,但我从未花时间分享答案,但是,现在是时候了。

当我们直接通过 pkcs #11 进行签名时,我们需要通过使用此处引用的 digestinfo 值手动为哈希添加前缀来管理哈希前缀:https://www.rfc-editor.org/rfc/rfc3447#page-43

更准确地说,对于 rsassa-pkcs1-v1_5 签名,实际签名函数的输入是 asn.1 der 编码的结构。 pkcs #11 具有特定于哈希的机制(例如ckm_sha256_rsa_pkcs),它们知道如何生成该结构,但它们都假设数据未经过哈希处理,而加密货币的情况并非如此。 signer 接口,因此我们必须使用通用的 cka_rsa_pkcs 机制,该机制仅执行原始签名操作。这意味着我们必须自己生成 asn.1 结构,只需为我们可能想要使用的所有哈希值提供正确的前缀即可做到这一点。

借助crypto.signeropts类型的opts参数,我们可以在以下情况下检索crypto.hash类型的哈希函数的标识符:调用 sign() 函数,并应用正确的前缀。

type signer struct {
    prikey p11.privatekey
    pubkey *rsa.publickey
}

var hashprefixes = map[crypto.hash][]byte{
    crypto.sha256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
    crypto.sha384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
    crypto.sha512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
}

func (s signer) public() crypto.publickey {
    return s.pubkey
}

func (s signer) sign(_ io.reader, digest []byte, opts crypto.signeropts) ([]byte, error) {
    return s.prikey.sign(*pkcs11.newmechanism(pkcs11.ckm_rsa_pkcs, nil), append(hashprefixes[opts.hashfunc()], digest...))
}

func newsigner(key p11.privatekey) (*signer, error) {
    // retrieve modulus n from the private key
    // reminder: n = p * q
    modulus, err := p11.object(key).attribute(pkcs11.cka_modulus)
    if err != nil {
        return nil, err
    }

    var pubexp []byte
    // retrieve public exponent (e: "always" 65537) from the private key
    // reminder: φ(n) = (p - 1) * (q - 1), e such that 1 < e < φ(n) and e and φ(n) are co prime
    pubexp, err = p11.object(key).attribute(pkcs11.cka_public_exponent)
    if err != nil {
        return nil, err
    }

    // public key is (e, n)
    pubkey := &rsa.publickey{
        n: new(big.int).setbytes(modulus),
        e: int(new(big.int).setbytes(pubexp).uint64()),
    }

    return &signer{prikey: key, pubkey: pubkey}, nil
}
登录后复制

它就像一个魅力。不过,还有更好的事情要做。

ckm_rsa_pkcs机制提供rsassa-pkcs1-v1_5类型的签名。我留给感兴趣的读者自己研究这个旧的签名方案,该方案不应再在新产品/软件中使用。

确实,建议使用ckm_rsa_pkcs_pss机制,它提供rsassa-pss类型的签名。

从这个原则出发,这是我现在使用的实现。

type Signer struct {
    priKey p11.PrivateKey
    pubKey *rsa.PublicKey
}

var sigAlg = map[crypto.Hash]uint{
    crypto.SHA256: pkcs11.CKM_SHA256_RSA_PKCS_PSS,
    crypto.SHA384: pkcs11.CKM_SHA384_RSA_PKCS_PSS,
    crypto.SHA512: pkcs11.CKM_SHA512_RSA_PKCS_PSS,
}

var mgf = map[crypto.Hash]uint{
    crypto.SHA256: pkcs11.CKG_MGF1_SHA256,
    crypto.SHA384: pkcs11.CKG_MGF1_SHA384,
    crypto.SHA512: pkcs11.CKG_MGF1_SHA512,
}

func (s Signer) Public() crypto.PublicKey {
    return s.pubKey
}

func (s Signer) Sign(_ io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
    return s.priKey.Sign(*pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS_PSS, pkcs11.NewPSSParams(sigAlg[opts.HashFunc()], mgf[opts.HashFunc()], uint(opts.HashFunc().Size()))), digest)
}

func NewSigner(key p11.PrivateKey) (*Signer, error) {
    // Retrieve modulus n from the private key
    // Reminder: n = p * q
    modulus, err := p11.Object(key).Attribute(pkcs11.CKA_MODULUS)
    if err != nil {
        return nil, err
    }

    var pubExp []byte
    // Retrieve public exponent (e: "always" 65537) from the private key
    // Reminder: φ(n) = (p - 1) * (q - 1), e such that 1 < e < φ(n) and e and φ(n) are co prime
    pubExp, err = p11.Object(key).Attribute(pkcs11.CKA_PUBLIC_EXPONENT)
    if err != nil {
        return nil, err
    }

    // Public key is (e, n)
    pubKey := &rsa.PublicKey{
        N: new(big.Int).SetBytes(modulus),
        E: int(new(big.Int).SetBytes(pubExp).Uint64()),
    }

    return &Signer{priKey: key, pubKey: pubKey}, nil
}
登录后复制

因此不再需要前缀,但是需要哈希算法标识符和要使用的签名算法以及要使用的mgf之间的对应关系。

最后,在go中,使用的签名算法不再是x509.sha256withrsa、x509.sha384withrsax509.sha512withrsa,而是 sha256withrsapsssha384withrsapsssha512withrsapss

签约愉快。

以上是无法使用自定义 crypto.Signer 实现生成 X.509 证书的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1665
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
2025最安全交易所TOP5:黑U避坑指南,资金100%保命法则 2025最安全交易所TOP5:黑U避坑指南,资金100%保命法则 May 08, 2025 pm 08:27 PM

在加密货币交易领域,交易所的安全性始终是用户关注的重点。2025年,经过多年的发展和演变,一些交易所凭借其卓越的安全措施和用户体验脱颖而出。本文将详细介绍2025年最安全的五大交易所,并提供如何避开黑U(黑客攻击用户)的实用指南,确保您的资金100%安全。

加密货币交易所app前十名 十大加密货币交易所app最新排行榜 加密货币交易所app前十名 十大加密货币交易所app最新排行榜 May 08, 2025 pm 05:57 PM

加密货币交易所app前十名分别是:1. Binance,2. OKX,3. Huobi,4. Coinbase,5. Kraken,6. Bybit,7. KuCoin,8. Gemini,9. Bitstamp,10. Crypto.com。每个平台都有其独特的优势和特点,用户可通过下载app、注册并完成验证、存款、选择交易对并确认交易来进行加密货币交易。

2025年十大数字虚拟币交易APP排行 十大数字币交易所app汇总 2025年十大数字虚拟币交易APP排行 十大数字币交易所app汇总 May 08, 2025 pm 05:24 PM

2025年十大数字虚拟币交易APP排行:1. Binance:全球领先,提供高效交易和多种金融产品。2. OKX:创新多样,支持多种交易类型。3. Huobi:稳定可靠,服务优质。4. Coinbase:新手友好,界面简洁。5. Kraken:专业交易者首选,工具强大。6. Bitfinex:高效交易,交易对丰富。7. Bittrex:安全合规,监管合作。

ok交易所国内如何注册?ok交易平台大陆新手注册使用指南 ok交易所国内如何注册?ok交易平台大陆新手注册使用指南 May 08, 2025 pm 10:51 PM

在加密货币市场中,选择一个可靠的交易平台是至关重要的。OK交易平台作为全球知名的数字资产交易所,吸引了大量大陆新手用户。本指南将详细介绍如何在OK交易平台上进行注册和使用,帮助新手用户快速上手。

期货交易平台TOP10:永续合约与期权交易 期货交易平台TOP10:永续合约与期权交易 May 08, 2025 pm 07:12 PM

在加密货币市场中,期货交易平台扮演着重要角色,尤其是在永续合约和期权交易方面。以下是当前市场上备受推崇的十大期货交易平台,并详细介绍它们在永续合约和期权交易方面的特点和优势。

加密货币app交易所前十名 2025靠谱的货币交易平台app盘点 加密货币app交易所前十名 2025靠谱的货币交易平台app盘点 May 08, 2025 pm 10:21 PM

十大加密货币交易所app分别是:1. Binance,2. OKX,3. Huobi,4. Coinbase,5. Kraken,6. Bybit,7. KuCoin,8. Gemini,9. Bitstamp,10. Crypto.com。每个平台都有其独特的优势和特点,用户可通过下载app、注册并完成验证、存款、选择交易对并确认交易来进行加密货币交易。

全球十大支持多链交易的加密货币平台2025年权威发布 全球十大支持多链交易的加密货币平台2025年权威发布 May 08, 2025 pm 07:15 PM

根据 2025 年权威机构的最新评估和行业趋势,以下是全球十大支持多链交易的加密货币平台,结合交易量、技术创新、合规性及用户口碑综合分析:

数字货币交易所平台排行榜前十 2025十大数字货币交易所最新盘点 数字货币交易所平台排行榜前十 2025十大数字货币交易所最新盘点 May 08, 2025 pm 05:27 PM

数字货币交易所平台排行榜前十:1. Binance,2. OKX,3. Huobi,4. Coinbase,5. Kraken,6. Bitfinex,7. Bittrex,8. Poloniex,9. KuCoin,10. Gemini,这些交易所均采用多重安全措施,提供良好的用户体验和广泛的交易对及合理费用结构。

See all articles