使用batch insert解决MySQL的insert吞吐量问题_MySQL
最近使用了一个非常简单易用的方法解决了业务上的一个insert吞吐量的问题,在此总结一下。
首先我们明确一下,insert吞吐量其实并不是指的IPS(insert per second),而是指的RPS(effect rows per second)。
其次我们再说一下batch insert,其实顾名思义,就是批量插入。这种优化思想是很基本的,MySQL中最出名的应用就是group commit。
简单的来说,就是将SQL A 变成 SQL B
SQL A : insert into table values ($values);SQL B : insert into table values ($values),($values)...($values);
下面,我们来看看这种异常简单的改动会带来什么样子的变化。
测试环境交代:单id的表结构,10w个int values,本地使用socket连接MySQL server,使用shell单进程测试。
首先,我们看下使用SQL A将10w个int values插入到test表中所需的耗时,耗时1777秒。
real 29m37.090suser 9m11.705ssys 5m0.762s
然后,我们看下使用SQL B(每次insert,插入10 values)将10w个int values插入到test表中所需的耗时,耗时53秒
real 0m53.871suser 0m19.455ssys 0m6.285s
这是整整近33倍的时间提升。这部分性能提升的原因在于以下几点:
1、每次和MySQL server建立连接都需要经过各种初始化、权限认证,语法解析等等多个步骤,需要消耗一定的资源。
2、更新一个values和更新n个values耗时基本一致。(下面对比一下insert 单values核insert 10 values的profile耗时)
单values:<br>+------------------------------+----------+| Status | Duration |+------------------------------+----------+| starting | 0.000056 || checking permissions | 0.000010 || Opening tables | 0.000034 || System lock | 0.000010 || init | 0.000011 || update | 0.000061 || Waiting for query cache lock | 0.000003 || update | 0.000015 || end | 0.000003 || query end | 0.000053 || closing tables | 0.000009 || freeing items | 0.000021 || logging slow query | 0.000002 || cleaning up | 0.000003 |+------------------------------+----------+<br>10 values:+------------------------------+----------+| Status | Duration |+------------------------------+----------+| starting | 0.000061 || checking permissions | 0.000008 || Opening tables | 0.000027 || System lock | 0.000008 || init | 0.000012 || update | 0.000073 || Waiting for query cache lock | 0.000003 || update | 0.000010 || end | 0.000008 || query end | 0.000053 || closing tables | 0.000010 || freeing items | 0.000021 || logging slow query | 0.000002 || cleaning up | 0.000003 |+------------------------------+----------+
但是,是否values积攒的越多,效率越高吗? 答案自然是否定的,任何优化方案都不会是纯线性的,肯定会在某个条件下出现拐点。
我们按照不同的values number进行测试,分别为1、10、50、100、200、500、1000、5000、10000.
从下图我们可以看出,随着values number的增加,耗时先是急剧下降,从1777s变成53s,然后在增加values number就不会有太大的变化,直到values number超过200,最后的10000个values number耗时达到了2分钟。
从下图我们可以看到随着values numbers的增加,QPS(蓝线)先是猛增,然后下降,最终小于1/s。而RPS(绿线)随着增加猛增到一个高level,然后随着增加逐步下降,超过5000个values number之后开始急剧下降。
另,最关键的是,QPS最高峰和RPS的最高峰并不在同一个values number下,也就是说QPS最高的时候并不代表着insert的吞吐量就最高。
在我这个简单测试场景中,values number最合适的值是50,和单values对比,耗时减少97%,insert吞吐量提升36倍。
而这个值和表结构和字段类型及大小都有关系。需要根据不同的场景进行测试之后才可以得出,但是普遍来说,50-100是比较推荐的考虑值。
至于这个如何实现,只要前端写入的时候加入队列即可,可以按照2个条件进行合并
- 队列中积攒到n个values number后在写入数据库,优点是性能最高,缺点是时间不可控,有可能等到第n个需要n秒,这时候业务已经不可接收了。
- 队列中积攒1s之后,有多少个就写入多少个,优点是时间可控,缺点就是values number数目不可能,高并发的情况,可能1s已经积攒上千个values了。
- 最优的方案其实是2个条件同时起作用,即进行个数效验,也进行时间效验,无论达到那个条件都触发后续写数据库操作。
总结:
1、使用batch insert可以提高insert的吞吐量。
2、叠加的values number需要根据实际情况测试得出。
3、同时使用个数和时间控制阀值。
附简单测试的记录值:
ValuesNum |
Time |
QPS |
Rows |
1 |
1777 |
56 |
56 |
10 |
53 |
188 |
1886 |
50 |
49 |
40 |
2040 |
100 |
50 |
19 |
2000 |
200 |
51 |
10 |
1960 |
500 |
57 |
3 |
1754 |
1000 |
60 |
2 |
1666 |
5000 |
69 |
0.3 |
1449 |
10000 |
133 |
0.07 |
751 |

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MySQL在Web应用中的主要作用是存储和管理数据。1.MySQL高效处理用户信息、产品目录和交易记录等数据。2.通过SQL查询,开发者能从数据库提取信息生成动态内容。3.MySQL基于客户端-服务器模型工作,确保查询速度可接受。

InnoDB使用redologs和undologs确保数据一致性和可靠性。1.redologs记录数据页修改,确保崩溃恢复和事务持久性。2.undologs记录数据原始值,支持事务回滚和MVCC。

MySQL是一种开源的关系型数据库管理系统,主要用于快速、可靠地存储和检索数据。其工作原理包括客户端请求、查询解析、执行查询和返回结果。使用示例包括创建表、插入和查询数据,以及高级功能如JOIN操作。常见错误涉及SQL语法、数据类型和权限问题,优化建议包括使用索引、优化查询和分表分区。

MySQL在数据库和编程中的地位非常重要,它是一个开源的关系型数据库管理系统,广泛应用于各种应用场景。1)MySQL提供高效的数据存储、组织和检索功能,支持Web、移动和企业级系统。2)它使用客户端-服务器架构,支持多种存储引擎和索引优化。3)基本用法包括创建表和插入数据,高级用法涉及多表JOIN和复杂查询。4)常见问题如SQL语法错误和性能问题可以通过EXPLAIN命令和慢查询日志调试。5)性能优化方法包括合理使用索引、优化查询和使用缓存,最佳实践包括使用事务和PreparedStatemen

选择MySQL的原因是其性能、可靠性、易用性和社区支持。1.MySQL提供高效的数据存储和检索功能,支持多种数据类型和高级查询操作。2.采用客户端-服务器架构和多种存储引擎,支持事务和查询优化。3.易于使用,支持多种操作系统和编程语言。4.拥有强大的社区支持,提供丰富的资源和解决方案。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。 MySQL以其高性能、可扩展性和跨平台支持着称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL适合小型和大型企业。1)小型企业可使用MySQL进行基本数据管理,如存储客户信息。2)大型企业可利用MySQL处理海量数据和复杂业务逻辑,优化查询性能和事务处理。

MySQL索引基数对查询性能有显着影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。
