释放非结构化数据的力量:人工智能的应用指南
随着几乎所有垂直行业都走向数字化,人们常说“数据就是新石油”。然而,人们往往没有足够重视的是,石油在经过精炼并以柴油、汽油、天然气或航空燃料等所需形式存在之前,不适合驱动我们的机器,非结构化数据的情况几乎相同。
据估计,非结构化数据约占全球组织生成和存储的数据的80%。随着数据量的增长,企业面临着多种挑战,特别是需要安全地存储数据并大规模、快速地从中获得可操作的见解。如今,从文本文档、图像、音频和视频文件等各种非结构化来源中提取相关数据,然后将其标准化以创建报告和输入,最后将发现结果纳入操作流程的过程说起来容易做起来难。
据估计,金融服务业等行业的数据生成正在加速增长。预计到2025年,全球企业将生成175ZB(1ZB=1万亿GB)的数据,其中约80%将是非结构化的。对于大多数当代企业而言,将这些数据转化为有意义的商业智能是一项艰巨的任务
处理非结构化数据的传统方法速度缓慢、容易出错且成本高昂。由于非结构化数据的不断流入,始终存在人为错误、疏忽和疲劳的风险,即使是最有经验的人员也会不知所措。光学字符识别(OCR)工具可以在一定程度上帮助数据数字化,但无法为其添加上下文。 重写后的内容: 傳統處理非結構化數據的方法速度緩慢、容易出錯且成本高昂。由於非結構化數據不斷流入,始終存在人為錯誤、疏忽和疲勞的風險,即使是最有經驗的人員也會不知所措。光學字符識別(OCR)工具可以在一定程度上幫助數據數字化,但無法為其添加上下文
即使在采用机器人流程自动化(RPA)的企业中,虽然它可能能够通过从源中获取数据并将其添加到数据库来编译数据,但它无法执行格式更改、数据结构或任何其他任务将非结构化数据转换为结构化的可操作的见解,可以帮助企业转变客户体验,促进卓越决策,推动创新和产品开发,降低风险,节省成本,并为企业提供竞争优势。这就是为什么用人工智能释放非结构化数据的力量是绝对必要的。
据报告显示,利用非结构化数据的组织可以实现收入增加10%-20%,成本降低20%-50%。预计到2025年,NLP技术的全球市场将达到433亿美元,这表明对分析非结构化文本数据的需求不断增长。
大型科技企业迅速根据这些预测采取行动,并制定了旨在解决该问题的解决方案。例如,亚马逊推出了Textract,谷歌推出了Vision、Document、AutoML和NLP等各种API。微软还在其认知服务套件中启用了非结构化数据处理,IBM也提供了Datacap。毫无疑问,所有这些解决方案在处理大量非结构化数据、探索它甚至使用它进行原型设计时都很好。
然而,这些工具与行业无关,通常很难提供充分且准确的特定领域的见解。由于对行业术语的错误理解以及对不同数据集之间的复杂性或共性的理解不正确,可能会出现错误。因此,即使意识到需要利用非结构化数据,也不总是能够通过流行或手动驱动的方法来实现预期结果
为了充分发挥非结构化数据的潜力,企业需要投资先进的数据分析工具和技术。利用自然语言处理(NLP)、人工智能(AI)和机器学习(ML)支持的深度学习工具,可以帮助企业获取特定领域的洞见,并辨识通用解决方案无法实现的模式
一个更好的解决方案是与专门处理非结构化数据并拥有广泛技术基础设施和人才的服务提供商合作,以获取准确的洞察力。这种方法不仅可以帮助企业定期获得更深入的见解,而且无需在基础设施、招聘人员和开发定制工具方面进行大量内部投资
结论
重要性不言而喻的非结构化数据对于现代企业至关重要,因为它所包含的洞察力可以改变业务增长、运营效率、客户体验和运营成本。然而,为了获得最佳效益,企业必须审查其数据分析和构建方法。通过整合先进的人工智能工具和数据流,可以大大简化这一过程。正是通过这种以人工智能为主导的专业非结构化数据分析方法,将决定金融服务等垂直领域的未来成功者和失败者之间的差距!
以上是释放非结构化数据的力量:人工智能的应用指南的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
