首页 科技周边 人工智能 语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

Oct 16, 2023 pm 08:21 PM
机器人 语言 模拟任务

重写内容为:机器之心报道

编辑:杜伟、小舟

GPT-4 与机器人又擦出了新的火花。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

在机器人领域,实现通用机器人策略需要大量数据,而在真实世界收集这些数据又耗时费力。尽管模拟为生成场景级和实例级的不同体量的数据提供了一种经济的解决方案,但由于需要大量的人力(尤其是对复杂任务),在模拟环境中增加任务多样性仍面临挑战。这就导致典型的人工模拟基准通常仅能包含数十到数百个任务。

如何解决呢?近年来,大语言模型在自然语言处理及各类任务的代码生成方面不断取得重大进展。同样,LLM 已经应用于机器人的多个方面,包括用户界面、任务和运动规划、机器人日志总结、成本和奖励设计,揭示了在物理基础和代码生成任务上的强大能力。

在近日的一项研究中,来自 MIT CSAIL、上海交通大学等机构的研究者进一步探究 LLM 是否可以用来创建多样化的模拟任务,并进一步挖掘它们的能力。

具体来讲,研究者提出了一种基于 LLM 的框架 GenSim,它为设计和验证任务资产安排、任务进展提供了一种自动化机制。更重要的是,生成的任务表现出了极大的多样性,促进了机器人策略的任务级泛化。此外从概念上讲,利用 GenSim,LLM 的推理和编码能力通过中间合成的模拟数据被提炼成了语言 - 视觉 - 行动策略。‍

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

需要重写的是:论文链接:

https://arxiv.org/pdf/2310.01361.pdf‍

GenSim 框架由以下三部分组成:

  • ‍首先是通过自然语言指令提出新任务以及相应代码实现的提示机制;
  • 其次是缓存以前生成的高质量指令代码以用于验证和语言模型微调的任务库,并作为综合任务数据集返回;
  • 最后是利用生成的数据来增强任务级泛化能力的语言调整多任务策略训练流程。‍

同时该框架通过两种不同的模式运行。其中在目标导向设置中,用户有特定的任务或者希望设计一个任务课程。这时 GenSim 采取自上而下的方法,以预期任务作为输入,迭代地生成相关任务以实现预期目标。而在探索性环境中,如果缺少目标任务的先验知识,则 GenSim 逐渐探索现有任务以外的内容,并建立与任务无关的基础策略。

在下图 1 中,研究者初始化了包含 10 个人工策划任务的任务库,使用 GenSim 对它进行扩展并生成 100 多个任务。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

研究者还提出了几个定制化的指标来渐进地衡量生成模拟任务的质量,并在目标导向和探索性设置中评估了几种 LLM。其中对于 GPT-4 生成的任务库,他们对 GPT-3.5 和 Code-Llama 等 LLM 进行有监督微调,进一步提升了 LLM 的任务生成性能。同时通过策略训练定量地衡量任务的可实现性,并提供不同属性的任务统计数据和不同模型之间的代码比较。

不仅如此,研究者还训练了多任务机器人策略,与仅仅在人工策划任务上训练的模型相比,这些策略在所有生成任务上都能很好地泛化,并提高了零样本泛化性能。其中与 GPT-4 生成任务的联合训练可以将泛化性能提升 50%,并在模拟中将大约 40% 的零样本任务迁移到新任务中。‍

最后,研究者还考虑了模拟到真实的迁移,表明在不同模拟任务上的预训练可以将真实世界的泛化能力提升 25%。

总之,在不同 LLM 生成的任务上训练的策略实现了对新任务的更好任务级泛化能力,彰显了通过 LLM 扩展模拟任务来训练基础策略的潜力。

Tenstorrent AI 产品管理总监 Shubham Saboo 给予了这项研究很高的评价,他表示,这是 GPT-4 结合机器人的突破性研究,通过 GPT-4 等 LLM 来生成 autopilot 上的一系列模拟机器人任务,使机器人的零样本学习和真实世界适应成为了现实。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

方法介绍

如下图 2 所示,GenSim 框架通过程序合成生成模拟环境、任务和演示。GenSim pipeline 从任务创建器开始,prompt 链以两种模式运行,即目标导向模式和探索模式,具体取决于目标任务。GenSim 中的任务库是一个内存组件,用于存储之前生成的高质量任务,任务库中存储的任务可用于多任务策略训练或微调 LLM。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

任务创建器

如下图 3 所示,语言链会首先生成任务描述,然后再生成相关的实现。任务描述包括任务名称、资源和任务摘要。该研究在 pipeline 中采用少样本 prompt 来生成代码。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

任务库

GenSim 框架中的任务库会存储任务创建器生成的任务,以生成更好的新任务和训练多任务策略。任务库是根据人工创建的基准中的任务进行初始化的。

任务库为任务创建器为描述生成阶段提供了作为条件的先前的任务描述,为代码生成阶段提供了先前的代码,并 prompt 任务创建器从任务库中选择参考任务作为编写新任务的样例。完成任务实现并通过所有测试后,LLM 会被 prompt,以「反思(reflect)」新任务和任务库,并形成是否应将新生成的任务添加到库中的综合决策。

如下图 4 所示,该研究还观察到 GenSim 表现出有趣的任务级组合和外推行为:

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

LLM 监督的多任务策略

生成任务后,该研究使用这些任务实现来生成演示数据并训练操作策略,并使用与 Shridhar et al. (2022) 类似的双流传输网络架构。

如下图 5 所示,该研究将程序视为任务和相关演示数据的有效表征(图 5),就可以定义任务之间的嵌入空间,其距离指标对于来自感知的各种因素(例如对象姿态和形状)更加稳健。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

为了实现内容的重写,需要将原文的语言改写为中文,不需要出现原句

该研究通过实验来验证 GenSim 框架,针对以下具体问题:(1)LLM 设计和实现模拟任务的效果如何?GenSim 可以改进 LLM 在任务生成方面的表现吗?(2) 对 LLM 生成的任务进行训练是否可以提高策略泛化能力?如果给出更多的生成任务,策略训练是否会受益更多?(3) 针对 LLM 生成的模拟任务进行预训练是否有利于现实世界的机器人策略部署?

评估 LLM 机器人模拟任务的泛化能力

如下图 6 所示,对于探索模式和目标导向模式任务生成,少样本和任务库的两阶段 prompt 链可以有效提高代码生成的成功率。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

任务级泛化

对相关任务的少样本策略优化。从下图 7 左可以观察到,联合训练 LLM 生成的任务可以将原始 CLIPort 任务上的策略性能提升 50% 以上,尤其是在低数据情况(如 5 个 demo)下。

对未见过任务的零样本策略泛化。从图 7 中可以看到,通过对 LLM 生成的更多任务进行预训练,研究者的模型可以更好地泛化到原始 Ravens 基准中的任务。图 7 右中,研究者还对人工编写任务、闭源 LLM 和开源微调 LLM 等不同任务源上的 5 个任务进行了预训练,并观察到了类似的零样本任务级泛化。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

使预训练模型适应真实世界

研究者将模拟环境中训练的策略迁移到了真实环境中。结果如下表 1 所示,在 70 个 GPT-4 生成的任务上进行预训练的模型在 9 个任务上进行了 10 次实验,取得 68.8% 的平均成功率,与仅在 CLIPort 任务上进行预训练的基线模型相比提升了 25% 以上,与仅在 50 个任务上预训练的模型相比提升了 15%。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

研究者还观察到,对不同模拟任务的预训练提高了长期复杂任务的稳健性。比如说,GPT-4 预训练的模型在真实世界的 build-wheel 任务上表现出了更加稳健的性能。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

消融实验

模拟训练成功率。在下表 2 中,研究者在拥有 200 个 demo 的生成任务子集上,演示了单任务和多任务策略训练的成功率。对于 GPT-4 生成任务的策略训练,它的平均任务成功率为单任务 75.8%,多任务 74.1%。

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

生成任务统计。下图 9 (a) 中,研究者展示了 LLM 生成的 120 个任务的不同特征的任务统计。其中 LLM 模型生成的颜色、资产、动作和实例数量之间存在着有趣的平衡。例如,生成的代码包含了很多超过 7 个对象实例的场景,以及很多拾起 - 放置原始动作和块等资产。

在代码生成的比较中,研究者在下图9(b)中对GPT-4和Code Llama的自上而下实验中的失败案例进行了定性评估

语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界

更多技术细节请参阅原论文。

以上是语言、机器人破壁,MIT等用GPT-4生成模拟任务,并迁移到真实世界的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1673
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
在 iPhone 上更改语言的 3 种方法 在 iPhone 上更改语言的 3 种方法 Feb 02, 2024 pm 04:12 PM

众所周知,iPhone是最人性化的电子产品之一,其中一个原因是它可以轻松地根据您的喜好进行个性化设置。在个性化设置中,您可以更改语言,这与您在设置iPhone时选择的语言不同。如果您对多种语言熟悉,或者您的iPhone语言设置错误,您可以按照我们下面解释的方法进行更改。如何更改iPhone的语言[3种方法]iOS允许用户在iPhone上自由切换首选语言,以适应不同的需求。您可以更改与Siri的交互语言,方便与语音助手进行沟通。同时,在使用本地键盘时,您可以轻松地在多种语言之间切换,提高输入效率。

2 个月不见,人形机器人 Walker S 会叠衣服了 2 个月不见,人形机器人 Walker S 会叠衣服了 Apr 03, 2024 am 08:01 AM

机器之能报道编辑:吴昕国内版的人形机器人+大模型组队,首次完成叠衣服这类复杂柔性材料的操作任务。随着融合了OpenAI多模态大模型的Figure01揭开神秘面纱,国内同行的相关进展一直备受关注。就在昨天,国内"人形机器人第一股"优必选发布了人形机器人WalkerS深入融合百度文心大模型后的首个Demo,展示了一些有趣的新功能。现在,得到百度文心大模型能力加持的WalkerS是这个样子的。和Figure01一样,WalkerS没有走动,而是站在桌子后面完成一系列任务。它可以听从人类的命令,折叠衣物

AI如何使机器人更具自主性和适应性? AI如何使机器人更具自主性和适应性? Jun 03, 2024 pm 07:18 PM

在工业自动化技术领域,最近有两个热点很难被忽视:人工智能(AI)和英伟达(Nvidia)。不要改变原内容的意思,微调内容,重写内容,不要续写:“不仅如此,这两者密切相关,因为英伟达在不仅仅局限于其最开始的图形处理单元(GPU),正在将其GPU技术扩展到数字孪生领域,同时紧密连接着新兴的AI技术。”最近,英伟达与众多工业企业达成了合作,包括领先的工业自动化企业,如Aveva、罗克韦尔自动化、西门子和施耐德电气,以及泰瑞达机器人及其MiR和优傲机器人公司。Recently,Nvidiahascoll

第二代Ameca来了!和观众对答如流,面部表情更逼真,会说几十种语言 第二代Ameca来了!和观众对答如流,面部表情更逼真,会说几十种语言 Mar 04, 2024 am 09:10 AM

人形机器人Ameca升级第二代了!最近,在世界移动通信大会MWC2024上,世界上最先进机器人Ameca又现身了。会场周围,Ameca引来一大波观众。得到GPT-4加持后,Ameca能够对各种问题做出实时反应。「来一段舞蹈」。当被问及是否有情感时,Ameca用一系列的面部表情做出回应,看起来非常逼真。就在前几天,Ameca背后的英国机器人公司EngineeredArts刚刚演示了团队最新的开发成果。视频中,机器人Ameca具备了视觉能力,能看到并描述房间整个情况、描述具体物体。最厉害的是,她还能

首个自主完成人类任务机器人出现,五指灵活速度超人,大模型加持虚拟空间训练 首个自主完成人类任务机器人出现,五指灵活速度超人,大模型加持虚拟空间训练 Mar 11, 2024 pm 12:10 PM

这周,由OpenAI、微软、贝佐斯和英伟达投资的机器人公司FigureAI宣布获得接近7亿美元的融资,计划在未来一年内研发出可独立行走的人形机器人。而特斯拉的擎天柱也屡屡传出好消息。没人怀疑,今年会是人形机器人爆发的一年。一家位于加拿大的机器人公司SanctuaryAI最近发布了一款全新的人形机器人Phoenix。官方号称它能以和人类一样的速率自主完成很多工作。世界上第一台能以人类速度自主完成任务的机器人Pheonix可以轻轻地抓取、移动并优雅地将每个对象放置在它的左右两侧。它能够自主识别物体的

如何将Win10电脑的语言设置为汉语? 如何将Win10电脑的语言设置为汉语? Jan 05, 2024 pm 06:51 PM

有时候我们再刚刚入手安装好电脑系统之后发现系统时英文的,遇到这种情况我们就需要把电脑的语言改成中文,那么win10系统里面该怎么把电脑的语言改成中文呢,现在就给大家带来具体的操作方法。win10电脑语言怎么改成中文1、打开电脑点击左下角的开始按键。2、点击左侧的设置选项。3、打开的页面选择“时间和语言”4、打开后,再点击左侧的“语言”5、在这里就可以设置你要的电脑语言。

人形机器人会变魔术了,春晚节目组了解一下 人形机器人会变魔术了,春晚节目组了解一下 Feb 04, 2024 am 09:03 AM

一眨眼的功夫,机器人都已经学会变魔术了?只见它先是拿起桌上的水勺,向观众证明了里面什么也没有……然后,它又把手中鸡蛋似的物体放了进去,然后把水勺放回桌子上,开始“施法”……就在它把水勺再次拿起的时候,奇迹发生了。原先放进去的鸡蛋不翼而飞,跳出的东西变成了一个篮球……再来看一遍连贯动作:△此动图为二倍速一套动作下来如行云流水,只有把视频用0.5倍速反复观看,才终于发现了其中的端倪:如果手速再快一些,大概真的就可以瞒天过海了。有网友感叹,机器人变魔术的水平比自己还要高:为我们表演这段魔术的,是Mag

云鲸逍遥001扫拖机器人,长「脑子」了!| 体验 云鲸逍遥001扫拖机器人,长「脑子」了!| 体验 Apr 26, 2024 pm 04:22 PM

近几年最受消费者欢迎的智能家电,扫拖机器人可谓是其中之一。它所带来的操作便利性,甚至是无需操作,让懒人们释放了双手,让消费者能够从日常的家务中「解放」出来,也能拿更多的时间花在自己喜欢的事情上,变相提高了生活品质。借着这股热潮,市面上几乎所有的家电产品品牌都在做自己的扫拖机器人,一时间使得整个扫拖机器人市场热闹非凡。但市场的快速拓张必然会带来一个隐患:很多厂商会采用机海战术的方式快速占领更多的市场份额,从而导致很多新品并没有什么升级点,说它是“套娃”机型也不为过。不过,并不是所有的扫拖机器人都是

See all articles