统一图像和文字生成的MiniGPT-5来了:Token变Voken,模型不仅能续写,还会自动配图了
大型模型正在实现语言和视觉之间的跨越,有望无缝地理解和生成文本和图像内容。在最近的一系列研究中,多模态特征集成不仅是一个不断发展的趋势,而且已经带来了从多模态对话到内容创建工具等关键进步。大型语言模型在文本理解和生成方面已经展现出无与伦比的能力。然而,同时生成具有连贯文本叙述的图像仍然是一个有待发展的领域
近日,加州大学圣克鲁兹分校的研究团队提出了 MiniGPT-5,这是一种以 「生成式 voken」概念为基础的创新型交错视觉语言生成技术。
- 论文地址:https://browse.arxiv.org/pdf/2310.02239v1.pdf
- 项目地址:https://github.com/eric-ai-lab/MiniGPT-5
通过特殊的视觉 token「生成式 voken」,将稳定扩散机制与LLM相结合,MiniGPT-5为熟练的多模态生成预示了一种新模式。同时,本文提出的两阶段训练方法强调了无描述基础阶段的重要性,使模型在数据稀缺的情况下也能茁壮成长。该方法的通用阶段不需要特定领域的注释,这使得本文解决方案与现有的方法截然不同。为了确保生成的文本和图像和谐一致,本文的双损失策略开始发挥作用,生成式voken方法和分类方法进一步增强了这一效果
在这些技术的基础上,这项工作标志着一种变革性的方法。研究团队通过使用ViT(Vision Transformer)和Qformer以及大型语言模型,将多模态输入转换为生成式voken,并与高分辨率的Stable Diffusion2.1无缝配对,以实现上下文感知图像生成。本文将图像作为辅助输入与指令调整方法相结合,并率先采用文本和图像生成损失,从而扩大了文本和视觉之间的协同作用
MiniGPT-5 与 CLIP 约束等模型相匹配,巧妙地将扩散模型与 MiniGPT-4 融合在一起,在不依赖特定领域注释的情况下实现了较好的多模态结果。最重要的是,本文的策略可以利用多模态视觉语言基础模型的进步,为增强多模态生成能力提供新蓝图。
如下图所示,除了原有的多模态理解和文本生成能力外,MiniGPT5 还能提供合理、连贯的多模态输出:
本文贡献体现在三个方面:
- 建议使用多模态编码器,它代表了一种新颖的通用技术,并已被证明比 LLM 和反转生成式 vokens 更有效,并将其与 Stable Diffusion 相结合,生成交错的视觉和语言输出(可进行多模态生成的多模态语言模型)。
- 重点介绍了一种新的两阶段训练策略,用于无描述多模态生成。单模态对齐阶段从大量文本图像对中获取高质量的文本对齐视觉特征。多模态学习阶段包括一项新颖的训练任务,即 prompt 语境生成,确保视觉和文本 prompt 能够很好地协调生成。在训练阶段加入无分类器指导,进一步提高了生成质量。
- 与其他多模态生成模型相比, MiniGPT-5 在 CC3M 数据集上取得了最先进的性能。MiniGPT-5 还在 VIST 和 MMDialog 等著名数据集上建立了新的基准。
现在,让我们一起来详细了解这项研究的内容
方法概览
为了使大型语言模型具备多模态生成能力,研究者引入了一个结构化框架,将预训练好的多模态大型语言模型和文本到图像生成模型整合在一起。为了解决不同模型领域之间的差异,他们引入了特殊的视觉符号「生成式 voken」(generative vokens),能够直接在原始图像上进行训练。此外,还推进了一种两阶段训练方法,并结合无分类器引导策略,以进一步提高生成质量。
多模态输入阶段
多模态大模型(如 MiniGPT-4)的最新进展主要集中在多模态理解方面,能够处理作为连续输入的图像。为了将其功能扩展到多模态生成,研究者引入了专为输出视觉特征而设计的生成式 vokens。此外,他们还在大语言模型(LLM)框架内采用了参数效率高的微调技术,用于多模态输出学习
多模态输出生成
为了确保生成式 token 与生成模型精确对齐,研究人员开发了一个紧凑型映射模块,用于维度匹配,并引入了几个监督损失,包括文本空间损失和潜在扩散模型损失。文本空间损失有助于模型准确学习 token 的位置,而潜在扩散损失则直接将 token 与适当的视觉特征对齐。由于生成式符号的特征直接由图像引导,因此该方法无需完整的图像描述,实现了无描述学习
训练策略
鉴于文本域和图像域之间存在不可忽略的领域偏移,研究者发现直接在有限的文本和图像交错数据集上进行训练可能会导致错位和图像质量下降。
因此,他们采用了两种不同的训练策略来缓解这一问题。第一种策略包括采用无分类器引导技术,在整个扩散过程中提高生成 token 的有效性;第二种策略分两个阶段展开:最初的预训练阶段侧重于粗略的特征对齐,随后的微调阶段致力于复杂的特征学习。
实验及结果
为了评估模型的效果,研究人员选择了多个基准进行了一系列评估。实验的目的是解决几个关键问题:
- MiniGPT-5 能否生成可信的图像和合理的文本?
- 在单轮和多轮交错视觉语言生成任务中,MiniGPT-5 与其他 SOTA 模型相比性能如何?
- 每个模块的设计对整体性能有什么影响?
为了评估MiniGPT-5模型在不同训练阶段上的性能,我们进行了定量分析,结果如图3所示:
为了展示所提模型的通用性和稳健性,我们对其进行了评估,涵盖了视觉(图像相关指标)和语言(文本指标)两个领域
VIST Final-Step 评估
第一组实验涉及单步评估,即根据最后一步的 prompt 模型生成相应的图像,结果如表 1 所示。
在所有三种设置中,MiniGPT-5的性能都优于微调后的SD 2。值得注意的是,MiniGPT-5(LoRA)模型的CLIP得分在多种prompt类型中始终优于其他变体,尤其是在结合图像和文本prompt时。另一方面,FID分数凸显了MiniGPT-5(前缀)模型的竞争力,表明图像嵌入质量(由CLIP分数反映)与图像的多样性和真实性(由FID分数反映)之间可能存在权衡。与直接在VIST上进行训练而不包含单模态配准阶段的模型(MiniGPT-5 w/o UAS)相比,虽然该模型保留了生成有意义图像的能力,但图像质量和一致性明显下降。这一观察结果凸显了两阶段训练策略的重要性
VIST Multi-Step 评估
在更详细全面的评估中,研究者系统地为模型提供了先前的历史背景,并随后在每个步骤中对生成的图像和叙述进行评估。
表2和表3总结了这些实验的结果,分别概述了图像和语言指标的性能。实验结果表明,MiniGPT-5能够利用长水平多模态输入提示在所有数据中生成连贯、高质量的图像,而不会影响原始模型的多模态理解能力。这突显了MiniGPT-5在不同环境中的有效性
VIST 人类评估
如表 4 所示,MiniGPT-5 在 57.18% 的情况下生成了更贴切的文本叙述,在 52.06% 的情况下提供了更出色的图像质量,在 57.62% 的场景中生成了更连贯的多模态输出。与采用文本到图像 prompt 叙述而不包含虚拟语气的两阶段基线相比,这些数据明显展示了其更强的多模态生成能力。
MMDialog 多轮评估
根据表5的结果显示,MiniGPT-5在生成文本回复方面比基线模型Divter更准确。尽管生成的图像质量相似,但与基准模型相比,MiniGPT-5在MM相关性方面更出色,这表明它能够更好地学习如何适当地定位图像生成,并生成高度一致的多模态响应
我们来看一下 MiniGPT-5 的输出结果,看看它的效果如何。下图 7 展示了 MiniGPT-5 在 CC3M 验证集上与基线模型的比较
下图8展示了MiniGPT-5与VIST验证集上基线模型的比较
下图 9 为 MiniGPT-5 与 MMDialog 测试集上基线模型的比较。
更多研究细节,可参考原论文。
以上是统一图像和文字生成的MiniGPT-5来了:Token变Voken,模型不仅能续写,还会自动配图了的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

如果您需要了解如何在Excel中使用具有多个条件的筛选功能,以下教程将指导您完成相应步骤,确保您可以有效地对数据进行筛选和排序。Excel的筛选功能是非常强大的,能够帮助您从大量数据中提取所需的信息。这个功能可以根据您设定的条件,过滤数据并只显示符合条件的部分,让数据的管理变得更加高效。通过使用筛选功能,您可以快速找到目标数据,节省了查找和整理数据的时间。这个功能不仅可以应用在简单的数据列表上,还可以根据多个条件进行筛选,帮助您更精准地定位所需信息。总的来说,Excel的筛选功能是一个非常实用的

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

多模态文档理解能力新SOTA!阿里mPLUG团队发布最新开源工作mPLUG-DocOwl1.5,针对高分辨率图片文字识别、通用文档结构理解、指令遵循、外部知识引入四大挑战,提出了一系列解决方案。话不多说,先来看效果。复杂结构的图表一键识别转换为Markdown格式:不同样式的图表都可以:更细节的文字识别和定位也能轻松搞定:还能对文档理解给出详细解释:要知道,“文档理解”目前是大语言模型实现落地的一个重要场景,市面上有很多辅助文档阅读的产品,有的主要通过OCR系统进行文字识别,配合LLM进行文字理

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高
