首页 科技周边 人工智能 OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

Aug 29, 2023 pm 08:25 PM
理论

近年来,文本生成图像领域取得了许多令人惊讶的突破,许多模型都能够根据文本指令创建高质量和多样化的图像。尽管生成的图像已经非常逼真,但目前的模型通常擅长生成风景、物体等实物图像,而难以生成具有高度连贯细节的图像,例如带有汉字等复杂字形文本的图像

为了解决这个问题,来自OPPO等机构的研究者们提出了一个名为GlyphDraw的通用学习框架。该框架的目标是让模型能够生成嵌入连贯文本的图像。这项工作是图像合成领域中首个解决汉字生成问题的工作

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

  • 请点击以下链接查看论文:https://arxiv.org/abs/2303.17870

  • 项目主页链接:https://1073521013.github.io/glyph-draw.github.io/

让我们先来看一下生成效果,比如为展览馆生成警示标语:

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

制作广告牌:

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

为图片添加简要的文字说明,同时还可以多样化文字样式

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

还有一个有趣且实用的例子是生成表情包:

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

尽管结果有一些缺陷,但总体而言,该研究的生成效果已经非常出色。该研究的主要贡献包括:

  • 该研究提出了一个名为GlyphDraw的汉字图像生成框架。在整个生成过程中,利用汉字字形和位置等辅助信息,该框架能够提供细粒度的指导,从而使得生成的汉字图像能够高质量地无缝嵌入到图像中

  • 这项研究提出了一种有效的训练策略,通过限制预训练模型中可训练参数的数量,以防止过拟合和灾难性遗忘(catastrophic forgetting),成功地保持了模型在开放域生成方面的强大性能,并且能够准确地生成汉字图像

  • 这项研究详细描述了构建训练数据集的过程,并提出了一种新的基准方法来评估汉字图像生成的质量。其中,GlyphDraw 的生成准确率达到了75%,明显优于之前的图像合成方法

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

模型介绍:

首先,该研究设计了一种复杂的图像-文本数据集构建策略。接着,利用开源图像合成算法Stable Diffusion,提出了一种通用学习框架GlyphDraw,如图2所示

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

稳定扩散的整体训练目标可以表示为以下公式:

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

GlyphDraw是基于Stable Diffusion中的交叉注意力机制的。它将原始输入的潜在向量z_t与图像的潜在向量z_t、文本掩码l_m和字形图像l_g进行级联替代

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

此外,通过使用特定领域的融合模块,条件 C 配备了混合字形和文本特征。引入文本掩码和字形信息,使整个训练过程实现了细粒度的扩散控制,这是提高模型性能的关键组成部分,最终能够生成带有汉字文本的图像

具体来说,文本信息的像素表征,在特别是复杂的文本形式中,如象形汉字,与自然物体存在明显的差异。举例来说,中文词语「天空(sky)」是由二维结构的多个笔画组成,而对应的自然图像是「点缀着白云的蓝天」。相比之下,汉字具有非常细粒度的特性,即使是微小的移动或变形也会导致文本渲染不正确,从而无法实现图像生成

嵌入字符到自然图像背景中还需要考虑一个关键问题,即在不影响相邻自然图像像素的情况下,精确控制文本像素的生成。为了在自然图像上展示出完美的汉字,作者设计了两个关键组件,即位置控制和字形控制,它们被集成到了扩散合成模型中

与其他模型的全局条件输入不同,字符生成需要更多地关注图像的特定局部区域,因为字符像素的潜在特征分布与自然图像像素的潜在特征分布有很大差异。为了防止模型学习崩溃,该研究创新性地提出了细粒度位置区域控制来解耦不同区域之间的分布

重写后的内容:除了位置控制之外,另一个重要问题是对汉字笔画合成进行精细控制。考虑到汉字的复杂性和多样性,在没有任何明确的先验知识的情况下,仅仅从大量的图像-文本数据集中学习是非常困难的。为了准确生成汉字,该研究将显式的字形图像作为额外的条件信息引入模型的扩散过程中

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

为了保持原意不变,需要将内容改写为中文,以下是改写后的内容: 研究设计和实验结果

由于此前没有专门用于汉字图像生成的数据集,该研究首先创建了一个用于定性和定量评估的基准数据集ChineseDrawText。随后,研究人员在ChineseDrawText上进行了几种方法的生成准确率测试,并通过OCR识别模型进行评估

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

该研究提出的GlyphDraw模型通过充分利用辅助字形和位置信息,达到了平均准确率为75%的出色效果,证明了该模型在字符图像生成方面的卓越能力。下图展示了几种方法的可视化比较结果

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

此外,GlyphDraw还可以通过限制训练参数来保持开放域图像合成性能,在MS-COCO FID-10k上一般图像合成的FID仅下降了2.3

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包

感兴趣的读者可以阅读论文原文,了解更多研究细节。

以上是OPPO提出GlyphDraw:一键生成带汉字图像,扩散模型输出表情包的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1677
14
CakePHP 教程
1431
52
Laravel 教程
1334
25
PHP教程
1280
29
C# 教程
1257
24
突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 突破传统缺陷检测的界限,\'Defect Spectrum\'首次实现超高精度丰富语义的工业缺陷检测。 Jul 26, 2024 pm 05:38 PM

在现代制造业中,精准的缺陷检测不仅是保证产品质量的关键,更是提升生产效率的核心。然而,现有的缺陷检测数据集常常缺乏实际应用所需的精确度和语义丰富性,导致模型无法识别具体的缺陷类别或位置。为了解决这一难题,由香港科技大学广州和思谋科技组成的顶尖研究团队,创新性地开发出了“DefectSpectrum”数据集,为工业缺陷提供了详尽、语义丰富的大规模标注。如表一所示,相比其他工业数据集,“DefectSpectrum”数据集提供了最多的缺陷标注(5438张缺陷样本),最细致的缺陷分类(125种缺陷类别

数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science 数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science Aug 08, 2024 pm 09:22 PM

编辑|KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅2埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的10%到20%,而传统的从头算方

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back 谷歌AI拿下IMO奥数银牌,数学推理模型AlphaProof面世,强化学习 is so back Jul 26, 2024 pm 02:40 PM

对于AI来说,奥数不再是问题了。本周四,谷歌DeepMind的人工智能完成了一项壮举:用AI做出了今年国际数学奥林匹克竞赛IMO的真题,并且距拿金牌仅一步之遥。上周刚刚结束的IMO竞赛共有六道赛题,涉及代数、组合学、几何和数论。谷歌提出的混合AI系统做对了四道,获得28分,达到了银牌水平。本月初,UCLA终身教授陶哲轩刚刚宣传了百万美元奖金的AI数学奥林匹克竞赛(AIMO进步奖),没想到7月还没过,AI的做题水平就进步到了这种水平。IMO上同步做题,做对了最难题IMO是历史最悠久、规模最大、最负

PRO | 为什么基于 MoE 的大模型更值得关注? PRO | 为什么基于 MoE 的大模型更值得关注? Aug 07, 2024 pm 07:08 PM

2023年,几乎AI的每个领域都在以前所未有的速度进化,同时,AI也在不断地推动着具身智能、自动驾驶等关键赛道的技术边界。多模态趋势下,Transformer作为AI大模型主流架构的局面是否会撼动?为何探索基于MoE(专家混合)架构的大模型成为业内新趋势?大型视觉模型(LVM)能否成为通用视觉的新突破?...我们从过去的半年发布的2023年本站PRO会员通讯中,挑选了10份针对以上领域技术趋势、产业变革进行深入剖析的专题解读,助您在新的一年里为大展宏图做好准备。本篇解读来自2023年Week50

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊 准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊 Aug 06, 2024 pm 07:34 PM

编辑|KX逆合成是药物发现和有机合成中的一项关键任务,AI越来越多地用于加快这一过程。现有AI方法性能不尽人意,多样性有限。在实践中,化学反应通常会引起局部分子变化,反应物和产物之间存在很大重叠。受此启发,浙江大学侯廷军团队提出将单步逆合成预测重新定义为分子串编辑任务,迭代细化目标分子串以生成前体化合物。并提出了基于编辑的逆合成模型EditRetro,该模型可以实现高质量和多样化的预测。大量实验表明,模型在标准基准数据集USPTO-50 K上取得了出色的性能,top-1准确率达到60.8%。

Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Nature观点,人工智能在医学中的测试一片混乱,应该怎么做? Aug 22, 2024 pm 04:37 PM

编辑|ScienceAI基于有限的临床数据,数百种医疗算法已被批准。科学家们正在讨论由谁来测试这些工具,以及如何最好地进行测试。DevinSingh在急诊室目睹了一名儿科患者因长时间等待救治而心脏骤停,这促使他探索AI在缩短等待时间中的应用。Singh利用了SickKids急诊室的分诊数据,与同事们建立了一系列AI模型,用于提供潜在诊断和推荐测试。一项研究表明,这些模型可以加快22.3%的就诊速度,将每位需要进行医学检查的患者的结果处理速度加快近3小时。然而,人工智能算法在研究中的成功只是验证此

See all articles