目录
生成速度的差异
粗粒度特征的相似性
一词多义
词语在 prompt 中的位置
模型结构
首页 科技周边 人工智能 图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

Jun 13, 2023 pm 02:26 PM
图像 模型

文本到图像的扩散生成模型,如 Stable Diffusion、DALL-E 2 和 mid-journey 等,一直都处于蓬勃的发展状态,有着极强的文本到图片的生成能力,但是「翻车」案例也会偶尔出现。

如下图所示,当给定文字提示:「A photo of a warthog」,Stable Diffusion 模型能生成一张相应的、清晰逼真的疣猪照片。然而,当我们对这个文本提示稍作修改,变为:「A photo of a warthog and a traitor」,说好的疣猪呢?怎么变成车了?

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

一起再来看一看接下来的几个例子,这些又是什么新物种?

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

是什么原因导致了这些奇怪的现象?这些生成失败的案例都来自于近期发布的一篇论文《Stable Diffusion is Unstable》:

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响


  • 论文地址:https://arxiv.org/abs/2306.02583

在这篇论文中首次提出了一种基于梯度的文本到图像模型的对抗算法。这种算法能够高效且有效地生成大量的攻击性文本提示,能够有效的发掘 Stable diffusion 模型的不稳定之处。这个算法在短文本提示中实现了 91.1% 的攻击成功率,而在长文本提示中,攻击成功率也达到了 81.2%。此外,该算法为研究文本到图像生成模型的失败模式提供了丰富的案例,为图片生成可控性研究奠定了基础。

基于该算法生成出的大量生成失败案例,研究者总结出四点生成失败的原因,分别是: 

  • 生成速度的差异
  • 粗粒度特征的相似性
  • 单词的多义性
  • 词语在 prompt 中的位置

生成速度的差异

当一个提示(prompt)包含多个生成目标时,常常会遇到某个目标在生成过程中消失的问题。理论上讲,同一个提示内的所有目标都应该共享同一个初始噪声。如图 4 所示,研究者们在固定初始噪声的条件下,生成了 ImageNet 上的一千个类别目标。他们将每个目标生成的最后一张图像作为参考图像,并计算了在每个时间步长上生成的图像与最后一步生成的图像的结构相似性指数(SSIM)得分,以此展示了不同目标生成速度的差异。

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

粗粒度特征的相似性

在扩散生成过程中,研究者发现,当两类目标存在全局或局部的粗粒度特征相似性时,会在计算交叉注意力(cross attention)权重时出现问题。这是因为这两个目标名词可能会同时关注同一张图片的同一个区块,从而产生特征纠缠的现象。例如,在图 6 中,羽毛(feather)和银三文鱼(silver salmon)在粗粒度特征上具有一定的相似性,这导致羽毛可以在基于银三文鱼的第八步生成过程中继续完成其生成任务。而对于没有纠缠的两类目标,比如银三文鱼和魔术师(magician),魔术师就无法在基于银三文鱼的中间步骤图像上完成其生成任务。

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

一词多义

在这一章节中,研究者们深入探索了当一个词语具有多重含义时的生成情况。他们的发现是,如果没有任何外界的扰动,生成的图像通常会按照该词语的某一特定含义来呈现。以 「warthog」(疣猪)为例,在图 A4 中的第一行就是根据这个词语 「疣猪」这种动物的含义进行生成的。

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

然而,研究者们也发现,当在原始 prompt 中注入其他词语时,就可能会引发语义的偏移。例如,当在描述 「warthog」的提示中引入了词语 「traitor」(叛徒),生成的图像内容可能就会偏离原来的 「疣猪」含义,产生全新的内容。

词语在 prompt 中的位置

在图 10 中,研究者观察到了一个有趣的现象。虽然从人类的视角来看,那些不同顺序排列的 prompt 大体上含义相同,都是在描述一个既有猫,又有木屐和手枪的图片。然而,对于语言模型,也就是 CLIP 文本编码器来说,词语的顺序在一定程度上影响了其对文本的理解,这种影响反过来又会改变生成图片的内容。这种现象说明,尽管我们的描述在语义上是一致的,但模型却可能因为词语的顺序不同而产生不同的理解和生成结果。这不仅揭示了模型处理语言和理解语义的方式与人类存在差异,同时也提示我们在设计和使用这类模型时,需要更加考虑词语顺序的影响。

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

模型结构

如下图 1 所示,在不改变提示中原本目标名词的前提下,研究者通过学习 Gumbel Softmax 分布,将单词替换或扩展的离散过程连续化,从而确保扰动生成的可微分性,生成图像后,使用 CLIP 分类器和 margin loss 来优化 ω,旨在生成 CLIP 无法正确分类的图像,为了确保攻击性提示与干净提示具有一定的相似性,研究着近一步使用了语义相似性约束和文本流利度约束。

一旦学会了这个分布学会后,该算法能够针对同一个干净的文本提示采样出多个具有攻击效果的文本提示。

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响

更多细节请见原文。

以上是图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1255
24
全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles