目录
什么是进程的通信
队列的创建 - multiprocessing
进程之间通信的方法
进程间的通信 - 队列演示案例
批量给 send 函数加入数据
小节
进程间通信的其他方式 - 补充
首页 后端开发 Python教程 Python进程间的通信方式是什么

Python进程间的通信方式是什么

Jun 03, 2023 pm 02:09 PM
python

什么是进程的通信

这里举一个通信机制的例子:我们都很熟悉通信这个词,比如一个人想给他的女友打电话。一旦通话建立,便会形成一个隐式的队列(请注意这个术语)。此时这个人就会通过对话的方式不停的将信息告诉女友,而这个人的女友也是在倾听着。我认为在大多数情况下,情况可能是倒过来的。

这里可以将他们两个人比作是两个进程,"这个人"的进程需要将信息发送给"女友"的进程,就需要一个队列的帮助。由于女友需要时刻接收队列中的信息,因此她可以同时进行其他事情,这意味着两个进程之间的通信主要依赖于队列。

这个队列可以支持发送消息与接收消息,“这个人"负责发送消息,反之"女友” 负责的是接收消息。

既然队列才是重点,那么来看一下队列要如何创建。

队列的创建 - multiprocessing

依然使用 multiprocessing 模块,调用该模块的 Queue 函数来实现队列的创建。

函数名 介绍 参数 返回值
Queue 队列的创建 mac_count 队列对象

Queue 函数功能介绍:调用 Queue 可以创建队列;它有一个参数 mac_count 代表队列最大可以创建多少信息,如果不传默认是无限长度。实例化一个队列对象之后,需要操作这个队列的对象进行放入与取出数据。

进程之间通信的方法

函数名 介绍 参数 返回值
put 将消息放入队列 message
get 获取队列消息 str

put 函数功能介绍:将数据传入。它有一个参数 message ,是一个字符串类型。

get 函数功能介绍:用来接收队列中的数据。(其实这里就是一个常用的json场景,有很多的数据传输都是 字符串 的,队列的插入与获取就是使用的字符串,所以 json 就非常适用这个场景。)

接下来就来练习一下 队列的使用 。

进程间的通信 - 队列演示案例

代码示例如下:

# coding:utf-8


import json
import multiprocessing


class Work(object):     # 定义一个 Work 类
    def __init__(self, queue):      # 构造函数传入一个 '队列对象' --> queue
            self.queue = queue

    def send(self, message):        # 定义一个 send(发送) 函数,传入 message
                                    # [这里有个隐藏的bug,就是只判断了传入的是否字符串类型;如果传入的是函数、类、集合等依然会报错]
        if not isinstance(message, str):    # 判断传入的 message 是否为字符串,若不是,则进行 json 序列化
            message = json.dumps(message)
        self.queue.put(message)     # 利用 queue 的队列实例化对象将 message 发送出去

    def receive(self):      # 定义一个 receive(接收) 函数,不需传入参数,但是因为接收是一个源源不断的过程,所以需要使用 while 循环
        while 1:
            result = self.queue.get()   # 获取 '队列对象' --> queue 传入的message
                                        # 由于我们接收的 message 可能不是一个字符串,所以要进程异常的捕获
            try:                        # 如果传入的 message 符合 JSON 格式将赋值给 res ;若不符合,则直接使用 result 赋值 res
                res = json.loads(result)
            except:
                res = result
            print('接收到的信息为:{}'.format(res))


if __name__ == '__main__':
    queue = multiprocessing.Queue()
    work = Work(queue)
    send = multiprocessing.Process(target=work.send, args=({'message': '这是一条测试的消息'},))
    receive = multiprocessing.Process(target=work.receive)

    send.start()
    receive.start()
登录后复制

使用队列建立进程间通信遇到的异常

但是这里会出现一个 报错,如下图:

报错截图示例如下:

Python进程间的通信方式是什么

这里的报错提示是 文件没有被发现的意思 。其实这里是我们使用 队列做 put() 和 get()的时候 有一把无形的锁加了上去,就是上图中圈中的 .SemLock 。我们不需要去关心造成这个错误的具体原因,要解决这个问题其实也很简单。

FileNotFoundError: [Errno 2] No such file or directory 异常的解决

需要阻塞进程的只是 send 或 receive 子进程中的一个,只要阻塞其中一个即可,这是理论上的情况。但是我们的 receive子进程是一个 while循环,它会一直执行,所以只需要给 send 子进程加上一个 join 即可。

解决示意图如下:

Python进程间的通信方式是什么

PS:虽然解决了报错问题,但是程序没有正常退出。

实际上由于我们的 receive 进程是个 while循环,并不知道要处理到什么时候,没有办法立刻终止。所以我们需要在 receive 进程 使用 terminate() 函数终结接收端。

运行结果如下:

Python进程间的通信方式是什么

批量给 send 函数加入数据

新建一个函数,写入 for循环 模拟批量添加要发送的消息

然后再给这个模拟批量发送数据的函数添加一个线程。

示例代码如下:

# coding:utf-8


import json
import time
import multiprocessing


class Work(object):     # 定义一个 Work 类
    def __init__(self, queue):      # 构造函数传入一个 '队列对象' --> queue
            self.queue = queue

    def send(self, message):        # 定义一个 send(发送) 函数,传入 message
                                    # [这里有个隐藏的bug,就是只判断了传入的是否字符串类型;如果传入的是函数、类、集合等依然会报错]
        if not isinstance(message, str):    # 判断传入的 message 是否为字符串,若不是,则进行 json 序列化
            message = json.dumps(message)
        self.queue.put(message)     # 利用 queue 的队列实例化对象将 message 发送出去


    def send_all(self):             # 定义一个 send_all(发送)函数,然后通过for循环模拟批量发送的 message
        for i in range(20):
            self.queue.put('第 {} 次循环,发送的消息为:{}'.format(i, i))
            time.sleep(1)



    def receive(self):      # 定义一个 receive(接收) 函数,不需传入参数,但是因为接收是一个源源不断的过程,所以需要使用 while 循环
        while 1:
            result = self.queue.get()   # 获取 '队列对象' --> queue 传入的message
                                        # 由于我们接收的 message 可能不是一个字符串,所以要进程异常的捕获
            try:                        # 如果传入的 message 符合 JSON 格式将赋值给 res ;若不符合,则直接使用 result 赋值 res
                res = json.loads(result)
            except:
                res = result
            print('接收到的信息为:{}'.format(res))


if __name__ == '__main__':
    queue = multiprocessing.Queue()
    work = Work(queue)
    send = multiprocessing.Process(target=work.send, args=({'message': '这是一条测试的消息'},))
    receive = multiprocessing.Process(target=work.receive)
    send_all = multiprocessing.Process(target=work.send_all,)


    send_all.start()    # 这里因为 send 只执行了1次,然后就结束了。而 send_all 却要循环20次,它的执行时间是最长的,信息也是发送的最多的
    send.start()
    receive.start()

    # send.join()       # 使用 send 的阻塞会造成 send_all 循环还未结束 ,receive.terminate() 函数接收端就会终结。
    send_all.join()     # 所以我们只需要阻塞最长使用率的进程就可以了
    receive.terminate()
登录后复制

运行结果如下:

Python进程间的通信方式是什么

从上图中我们可以看到 send 与 send_all 两个进程都可以通过 queue这个实例化的 Queue 对象发送消息,同样的 receive接收函数也会将两个进程传入的 message 打印输出出来。

小节

在这一章节,我们成功运用队列实现了跨进程通信,同时也掌握了队列的操作技巧。一个队列中,有一端(这里我们演示的是 send端)通过 put方法实现添加相关的信息,另一端使用 get 方法获取相关的信息;两个进程相互配合达到一个进程通信的效果。

除了队列,进程之间还可以使用管道、信号量和共享内存等方式进行通信,如果您感兴趣,可以了解一下这些方法。可以自行拓展一下。

进程间通信的其他方式 - 补充

python提供了多种进程通信的方式,包括信号,管道,消息队列,信号量,共享内存,socket等

主要Queue和Pipe这两种方式,Queue用于多个进程间实现通信,Pipe是两个进程的通信。

1.管道:分为匿名管道和命名管道

匿名管道:在内核中申请一块固定大小的缓冲区,程序拥有写入和读取的权利,一般使用fock函数实现父子进程的通信

命名管道:在内存中申请一块固定大小的缓冲区,程序拥有写入和读取的权利,没有血缘关系的进程也可以进程间通信

特点:面向字节流;生命周期随内核;自带同步互斥机制;半双工,单向通信,两个管道实现双向通信

一种重写方式是:在操作系统内核中建立一个队列,队列中包含多个数据报元素,多个进程可以通过特定句柄来访问该队列。消息队列可以用来将数据从一个进程发送到另一个进程。每个数据块都被认为是有一个类型,接收者进程接收的数据块可以有不同的类型。消息队列也有管道一样的不足,就是每个消息的最大长度是有上限的,每个消息队列的总的字节数是有上限的,系统上消息队列的总数也有一个上限

特点:消息队列可以被认为是一个全局的一个链表,链表节点中存放着数据报的类型和内容,有消息队列的标识符进行标记;消息队列允许一个或多个进程写入或读取消息;消息队列的生命周期随内核;消息队列可实现双向通信

3.信号量:在内核中创建一个信号量集合(本质上是数组),数组的元素(信号量)都是1,使用P操作进行-1,使用V操作+1

P(sv):如果sv的值大于零,就给它减1;如果它的值为零,就挂起该程序的执行

V(sv):如果有其他进程因等待sv而被挂起,就让它恢复运行,如果没有进程因等待sv而挂起,就给它加1

PV操作用于同一个进程,实现互斥;PV操作用于不同进程,实现同步

功能:对临界资源进行保护

4.共享内存:将同一块物理内存一块映射到不同的进程的虚拟地址空间中,实现不同进程间对同一资源的共享。说到进程间通信方式,共享内存可以说是最有用的,也是最快速的IPC形式

特点:不同从用户态到内核态的频繁切换和拷贝数据,直接从内存中读取就可以;共享内存是临界资源,所以需要操作时必须要保证原子性。使用信号量或者互斥锁都可以.

以上是Python进程间的通信方式是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1676
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

sublime怎么运行代码python sublime怎么运行代码python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

Golang vs. Python:性能和可伸缩性 Golang vs. Python:性能和可伸缩性 Apr 19, 2025 am 12:18 AM

Golang在性能和可扩展性方面优于Python。1)Golang的编译型特性和高效并发模型使其在高并发场景下表现出色。2)Python作为解释型语言,执行速度较慢,但通过工具如Cython可优化性能。

vscode在哪写代码 vscode在哪写代码 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

notepad 怎么运行python notepad 怎么运行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

See all articles