MySQL COUNT(*)性能原理是什么
1.COUNT(1)、COUNT(*)与COUNT(字段)哪个更快?
执行效果:
COUNT(*)
MySQL 对count(*)
进行了优化,count(*)
直接扫描主键索引记录,并不会把全部字段取出来,直接按行累加。COUNT(1)
InnoDB引擎遍历整张表,但不取值,server 层对于返回的每一行,放一个数字“1”进去,按行累加。COUNT(字段)
如果这个“字段”是定义为NOT NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,server 层判断不能为NULL,按行累加;如果这个“字段”定义允许为NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,然后把值取出来再判断一下,不是 NULL才累加。
实验分析
本文测试使用的环境:
[root@zhyno1 ~]# cat /etc/system-release CentOS Linux release 7.9.2009 (Core) [root@zhyno1 ~]# uname -a Linux zhyno1 3.10.0-1160.62.1.el7.x86_64 #1 SMP Tue Apr 5 16:57:59 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
测试数据库采用的是(存储引擎采用InnoDB,其它参数默认):
(Mon Jul 25 09:41:39 2022)[root@GreatSQL][(none)]>select version(); +-----------+ | version() | +-----------+ | 8.0.25-16 | +-----------+ 1 row in set (0.00 sec)
实验开始:
#首先我们创建一个实验表 CREATE TABLE test_count ( `id` int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY, `name` varchar(20) NOT NULL, `salary` int(1) NOT NULL, KEY `idx_salary` (`salary`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; #插入1000W条数据 DELIMITER // CREATE PROCEDURE insert_1000w() BEGIN DECLARE i INT; SET i=1; WHILE i<=10000000 DO INSERT INTO test_count(name,salary) VALUES('KAiTO',1); SET i=i+1; END WHILE; END// DELIMITER ; #执行存储过程 call insert_1000w();
接下来我们分别来实验一下:
COUNT(1)
花费了4.19秒
(Sat Jul 23 22:56:04 2022)[root@GreatSQL][test]>select count(1) from test_count; +----------+ | count(1) | +----------+ | 10000000 | +----------+ 1 row in set (4.19 sec)
COUNT(*)
花费了4.16秒
(Sat Jul 23 22:57:41 2022)[root@GreatSQL][test]>select count(*) from test_count; +----------+ | count(*) | +----------+ | 10000000 | +----------+ 1 row in set (4.16 sec)
COUNT(字段)
花费了4.23秒
(Sat Jul 23 22:58:56 2022)[root@GreatSQL][test]>select count(id) from test_count; +-----------+ | count(id) | +-----------+ | 10000000 | +-----------+ 1 row in set (4.23 sec)
我们可以再来测试一下执行计划
COUNT(*)
(Sat Jul 23 22:59:16 2022)[root@GreatSQL][test]>explain select count(*) from test_count; +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ | 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index | +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ 1 row in set, 1 warning (0.01 sec) (Sat Jul 23 22:59:48 2022)[root@GreatSQL][test]>show warnings; +-------+------+-----------------------------------------------------------------------+ | Level | Code | Message | +-------+------+-----------------------------------------------------------------------+ | Note | 1003 | /* select#1 */ select count(0) AS `count(*)` from `test`.`test_count` | +-------+------+-----------------------------------------------------------------------+ 1 row in set (0.00 sec)
COUNT(1)
(Sat Jul 23 23:12:45 2022)[root@GreatSQL][test]>explain select count(1) from test_count; +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ | 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index | +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) (Sat Jul 23 23:13:02 2022)[root@GreatSQL][test]>show warnings; +-------+------+-----------------------------------------------------------------------+ | Level | Code | Message | +-------+------+-----------------------------------------------------------------------+ | Note | 1003 | /* select#1 */ select count(1) AS `count(1)` from `test`.`test_count` | +-------+------+-----------------------------------------------------------------------+ 1 row in set (0.00 sec)
COUNT(字段)
(Sat Jul 23 23:13:14 2022)[root@GreatSQL][test]>explain select count(id) from test_count; +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ | 1 | SIMPLE | test_count | NULL | index | NULL | idx_salary | 4 | NULL | 9980612 | 100.00 | Using index | +----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+ 1 row in set, 1 warning (0.00 sec) (Sat Jul 23 23:13:29 2022)[root@GreatSQL][test]>show warnings; +-------+------+-----------------------------------------------------------------------------------------------+ | Level | Code | Message | +-------+------+-----------------------------------------------------------------------------------------------+ | Note | 1003 | /* select#1 */ select count(`test`.`test_count`.`id`) AS `count(id)` from `test`.`test_count` | +-------+------+-----------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec)
需要注意的是COUNT里如果是非主键字段的话
(Tue Jul 26 14:01:57 2022)[root@GreatSQL][test]>explain select count(name) from test_count where id <100 ; +----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+ | 1 | SIMPLE | test_count | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 99 | 100.00 | Using where | +----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+ 1 row in set, 1 warning (0.00 sec)
实验结果
1.从上面的实验我们可以得出,
COUNT(*)
和COUNT(1)
是最快的,其次是COUNT(id)
。2.
count(*)
被MySQL查询优化器改写成了count(0)
,并选择了idx_salary索引。3.
count(1)
和count(id)
都选择了idx_salary索引。
实验结论
总结:COUNT(*)=COUNT(1)>COUNT(id)
MySQL的官方文档也有说过:
InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no performance difference
翻译: InnoDB以相同的方式处理SELECT COUNT(*)和SELECT COUNT(1)操作。没有性能差异
所以说明了对于COUNT(1)
或者是COUNT(*)
,MySQL的优化其实是完全一样的,没有存在没有性能的差异。
但是建议使用COUNT(*)
,因为这是MySQL92定义的标准统计行数的语法。
2.COUNT(*)与TABLES_ROWS
在InnoDB中,MySQL数据库每个表占用的空间、表记录的行数可以打开MySQL的information_schema
数据库。在该库中有一个TABLES
表,这个表主要字段分别是:
TABLE_SCHEMA : 数据库名
TABLE_NAME:表名
ENGINE:所使用的存储引擎
TABLES_ROWS:记录数
DATA_LENGTH:数据大小
INDEX_LENGTH:索引大小
TABLE_ROWS用于显示这个表当前有多少行,这个命令执行挺快的,那这个TABLE_ROWS能代替count(*)
吗?
我们用TABLES_ROWS查询一下表记录条数:
(Sat Jul 23 23:15:14 2022)[root@GreatSQL][test]>SELECT TABLE_ROWS -> FROM INFORMATION_SCHEMA.TABLES -> WHERE TABLE_NAME = 'test_count'; +------------+ | TABLE_ROWS | +------------+ | 9980612 | +------------+ 1 row in set (0.03 sec)
可以看到,记录的条数并不准确,因为InnoDB引擎下TABLES_ROWS行计数仅是大概估计值。
3.COUNT(*)是怎么样执行的?
首先要明确的是,MySQL有多种不同引擎,在不同的引擎中,count(*)
有不同的实现方式,本文主要介绍的是在InnoDB引擎上的执行流程
在InnoDB存储引擎中,count(*)
函数是先从内存中读取表中的数据到内存缓冲区,然后扫描全表获得行记录数的。简单来说就是全表扫描,一个循环解决问题,循环内: 先读取一行,再决定该行是否计入count
循环内是一行一行进行计数处理的。
在MyISAM引擎中是把一个表的总行数存在了磁盘上,因此执行count(*)
的时候会直接返回这个数,效率很高。
之所以InnoDB 不跟 MyISAM一样把数字存起来,是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB表应该返回多少行也是不确定的。无论在事务支持、并发能力还是数据安全方面,InnoDB都比MyISAM表现更优。
虽然如此,InnoDB对于count(*)
操作还是做了优化的。InnoDB是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于count(*)
这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。
需要注意的是我们在这篇文章里讨论的是没有过滤条件的count(*)
,如果加了WHERE条件的话,MyISAM引擎的表也是不能返回得这么快的。
4.总结
1.
COUNT(*)=COUNT(1)>COUNT(id)
2.COUNT函数的用法,主要用于统计表行数。主要用法有
COUNT(*)、COUNT(字段)和COUNT(1)
3.因为
COUNT(*)
是SQL92定义的标准统计行数的语法,所以MySQL对他进行了很多优化,MyISAM中会直接把表的总行数单独记录下来供COUNT(*)
查询,而InnoDB则会在扫表的时候选择最小的索引来降低成本。这些优化的前提是没有进行WHERE和GROUP的条件查询。4.在InnoDB中
COUNT(*)
和COUNT(1)
实现上没有区别,而且效率一样,但是COUNT(字段)
需要进行字段的非NULL判断,所以效率会低一些。5.因为
COUNT(*)
是SQL92定义的标准统计行数的语法,并且效率高,所以还是建议使用COUNT(*)
查询表的行数。6.正如前面
COUNT(name)
的用例那样,在建表过程中需要根据业务需求建立性能较高的索引,同时也要注意避免建立不必要的索引。
以上是MySQL COUNT(*)性能原理是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Laravel 是一款 PHP 框架,用于轻松构建 Web 应用程序。它提供一系列强大的功能,包括:安装: 使用 Composer 全局安装 Laravel CLI,并在项目目录中创建应用程序。路由: 在 routes/web.php 中定义 URL 和处理函数之间的关系。视图: 在 resources/views 中创建视图以呈现应用程序的界面。数据库集成: 提供与 MySQL 等数据库的开箱即用集成,并使用迁移来创建和修改表。模型和控制器: 模型表示数据库实体,控制器处理 HTTP 请求。

MySQL和phpMyAdmin是强大的数据库管理工具。1)MySQL用于创建数据库和表、执行DML和SQL查询。2)phpMyAdmin提供直观界面进行数据库管理、表结构管理、数据操作和用户权限管理。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。 MySQL以其高性能、可扩展性和跨平台支持着称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

在开发一个小型应用时,我遇到了一个棘手的问题:需要快速集成一个轻量级的数据库操作库。尝试了多个库后,我发现它们要么功能过多,要么兼容性不佳。最终,我找到了minii/db,这是一个基于Yii2的简化版本,完美地解决了我的问题。

文章摘要:本文提供了详细分步说明,指导读者如何轻松安装 Laravel 框架。Laravel 是一个功能强大的 PHP 框架,它 упростил 和加快了 web 应用程序的开发过程。本教程涵盖了从系统要求到配置数据库和设置路由等各个方面的安装过程。通过遵循这些步骤,读者可以快速高效地为他们的 Laravel 项目打下坚实的基础。

MySQL通过表结构和SQL查询高效管理结构化数据,并通过外键实现表间关系。1.创建表时定义数据格式和类型。2.使用外键建立表间关系。3.通过索引和查询优化提高性能。4.定期备份和监控数据库确保数据安全和性能优化。

在使用Thelia开发电商网站时,我遇到了一个棘手的问题:MySQL模式设置不当,导致某些功能无法正常运行。经过一番探索,我找到了一个名为TheliaMySQLModesChecker的模块,它能够自动修复Thelia所需的MySQL模式,彻底解决了我的困扰。

MySQL是一个开源的关系型数据库管理系统,广泛应用于Web开发。它的关键特性包括:1.支持多种存储引擎,如InnoDB和MyISAM,适用于不同场景;2.提供主从复制功能,利于负载均衡和数据备份;3.通过查询优化和索引使用提高查询效率。
