目录
01 环境感知技术" >01 环境感知技术
02 高精度定位技术" >02 高精度定位技术
03 决策与规划技术" >03 决策与规划技术
04 控制与执行技术" >04 控制与执行技术
05 总结" >05 总结
首页 科技周边 人工智能 一文解读自动驾驶关键技术难点

一文解读自动驾驶关键技术难点

May 15, 2023 am 11:19 AM
技术 自动驾驶

美国汽车工程师协会根据汽车智能化程度将自动驾驶分为L0-L5共6个等级:

  • L0为无自动化(No Automation, NA),即传统汽车,驾驶员执行所有的操作任务,例如转向、制动、加速、减速或泊车等;

  • L1为驾驶辅助(Driving Assistant, DA),即能为驾驶员提供驾驶预警或辅助等,例如对方向盘或加速减速中的一项操作提供支持,其余由驾驶员操作;

  • L2为部分自动化(Partial Automation,PA),车辆对方向盘和加减速中的多项操作提供驾驶,驾驶员负责其他驾驶操作;

  • L3为条件自动化(Conditional Automation,CA),即由自动驾驶系统完成大部分驾驶操作,驾驶员需要集中注意力以备不时之需;

  • L4为高度自动化(High Automation,HA),由车辆完成所有驾驶操作,驾驶员不需要集中注意力,但限定道路和环境条件;

  • L5为完全自动化(Full Automation, FA),在任何道路和环境条件下,由自动驾驶系统完成所有的驾驶操作,驾驶员不需要集中注意力。

一文解读自动驾驶关键技术难点

自动驾驶汽车的软硬件架构如图2所示,主要分为环境认知层、决策规划层、控制层和执行层。环境认(感)知层主要通过激光雷达、毫米波雷达、超声波雷达、车载摄像头、夜视系统、GPS、陀螺仪等传感器获取车辆所处环境信息和车辆状态信息,具体来说包括:车道线检测、红绿灯识别、交通标识牌识别、行人检测、车辆检测、障碍物识别和车辆定位等;决策规划层则分为任务规划、行为规划和轨迹规划,根据设定的路线规划、所处的环境和车辆自身状态等规划下一步具体行驶任务(车道保持、换道、跟车、超车、避撞等)、行为(加速、减速、转弯、刹车等)和路径(行驶轨迹);控制层及执行层则基于车辆动力学系统模型对车辆驱动、制动、转向等进行控制,使车辆跟随所制定的行驶轨迹。

一文解读自动驾驶关键技术难点

自动驾驶技术涉及较多的关键技术,本文主要介绍环境感知技术、高精度定位技术、决策与规划技术和控制与执行技术。

01 环境感知技术

环境感知指对于环境的场景理解能力,例如障碍物的类型、道路标志及标线、行车车辆的检测、交通信息等数据的语言分类。定位是对感知结果的后处理,通过定位功能从而帮助车辆了解其相对于所处环境的位置。环境感知需要通过传感器获取大量的周围环境信息,确保对车辆周围环境的正确理解,并基于此做出相应的规划和决策。

自动驾驶车辆常用的环境感知传感器包括:摄像头、激光雷达、毫米波雷达、红外线和超声波雷达等。摄像头是自动驾驶车辆最常用、最简单且最接近人眼成像原理的环境感知传感器。通过实时拍摄车辆周围的环境,采用CV技术对所拍摄图像进行分析,实现车辆周围的车辆和行人检测以及交通标志识别等功能。

摄像头的主要优点在于其分辨率高、成本低。但在夜晚、雨雪雾霾等恶劣天气下,摄像头的性能会迅速下降。此外摄像头所能观察的距离有限,不擅长于远距离观察。

毫米波雷达也是自动驾驶车辆常用的一种传感器,毫米波雷达是指工作在毫米波段(波长1-10 mm ,频域30-300GHz)的雷达,其基于ToF技术(Time of Flight)对目标物体进行检测。毫米波雷达向外界连续发送毫米波信号,并接收目标返回的信号,根据信号发出与接收之间的时间差确定目标与车辆之间的距离。因此,毫米波雷达主要用于避免汽车与周围物体发生碰撞,如盲点检测、避障辅助、泊车辅助、自适应巡航等。毫米波雷达的抗干扰能力强,对降雨、沙尘、烟雾等离子的穿透能力要比激光和红外强很多,可全天候工作。但其也具有信号衰减大、容易受到建筑物、人体等的阻挡,传输距离较短,分辨率不高,难以成像等不足。

激光雷达也是通过ToF技术来确定目标位置与距离的。激光雷达是通过发射激光束来实现对目标的探测,其探测精度和灵敏度更高,探测范围更广,但激光雷达更容易受到空气中雨雪雾霾等的干扰,其高成本也是制约其应用的主要原因。车载激光雷达按发射激光束的数量可分为单线、4线、8线、16线和64线激光雷达。可以通过下面这个表格(表1),对比主流传感器的优势与不足。

一文解读自动驾驶关键技术难点

自动驾驶环境感知通常采用“弱感知 超强智能”和“强感知 强智能”两大技术路线。其中“弱感知 超强智能”技术是指主要依赖摄像头与深度学习技术实现环境感知,而不依赖于激光雷达。这种技术认为人类靠一双眼睛就可以开车,那么车也可以靠摄像头来看清周围环境。如果超强智能暂时难以达到,为实现无人驾驶,那就需要增强感知能力,这就是所谓的“强感知 强智能”技术路线。

相比“弱感知 超强智能”技术路线,“强感知 强智能”技术路线的最大特征就是增加了激光雷达这个传感器,从而大幅提高感知能力。特斯拉采用“弱智能 超强智能”技术路线,而谷歌Waymo、百度Apollo、Uber、福特汽车等人工智能企业、出行公司、传统车企都采用“强感知 强智能”技术路线。

02 高精度定位技术

定位的目的是获取自动驾驶车辆相对于外界环境的精确位置,是自动驾驶车辆必备的基础。在复杂的地市道路行驶,定位精度要求误差不超过10 cm。例如:只有准确知道车辆与路口的距离,才能进行更精确的预判和准备;只有准确对车辆进行定位,才能判断车辆所处的车道。如果定位误差较高,严重时会造成交通完全事故。

GPS是目前最广泛采用的定位方法,GPS精度越高,GPS传感器的价格也越昂贵。但目前商用GPS技术定位精度远远不够,其精度只有米级且容易受到隧道遮挡、信号延迟等因素的干扰。为了解决这个问题,Qualcomm开发了基于视觉增强的高精度定位(VEPP)技术,该技术通过融合GNSS全球导航、摄像头、IMU惯性导航和轮速传感器等多个汽车部件的信息,通过各传感器之间的相互校准和数据融合,实现精确到车道线的全球实时定位。

03 决策与规划技术

决策规划是自动驾驶的关键部分之一,它首先是融合多传感器信息,然后根据驾驶需求进行任务决策,接着能够在避开存在的障碍物前提之下,通过一些特定的约束条件,规划出两点之间多条可以选择的安全路径,并在这些路径当中选择一条最优的路径,作为车辆行驶轨迹,那就是规划。按照划分的层面不同,可以分为全局规划和局部规划两种,全局规划是由获取到的地图信息,规划出一条在特定条件之下的无碰撞最优路径。例如,从上海到北京有很多条路,规划出一条作为行驶路线即为全局规划。

如栅格法、可视图法、拓扑法、自由空间法、神经网络法等静态路径规划算法。局部规划的则是根据全局的规划,在一些局部环境信息的基础之上,能够避免碰撞一些未知的障碍物,最终达到目的目标点的过程。例如,在全局规划好的上海到北京的那条路线上会有其他车辆或者障碍物,想要避过这些障碍物或者车辆,需要转向调整车道,这就是局部路径规划。局部路径规划的方法包括:人工势场法、矢量域直方图法、虚拟力场法、遗传算法等动态路径规划算法等。

决策规划层是自主驾驶系统,智能性的直接体现,对车辆的行驶安全性和整车起到了决定性的作用,常见的决策规划体系结构,有分层递进式,反应式,以及二者混合式。

分层递进式体系结构,就是一个串联系统的结构,在该系统当中,智能驾驶系统的各模块之间次序分明,上一个模块的输出即为下一模块的输入,因此又称为感知规划行动结构。但这种结构可靠性并不高,一旦某个模块出现软件或者硬件故障,整个信息流就会受到影响,整个系统很有可能发生崩溃,甚至处于瘫痪状态。

一文解读自动驾驶关键技术难点

反应式体系结构采用并联的结构,控制层都可以直接基于传感器的输入进行决策,因此它所产生的动作就是传感数据直接作用的一个结果,可以突出感知动作的特点,适用于完全陌生的环境。反应式体系结构中的许多行为主要涉及成为一个简单的特殊任务,所以感觉规划控制可以紧密的结合在一块,占用的储存空间并不大,因而可以产生快速的响应,实时性比较强,同时每一层只需要负责系统的某一个行为,整个系统可以方便灵活的实现低层次到高层次的一个过渡,而且如若其中一个模块出现了预料之外的故障,剩下的层次,仍然可以产生有意义的动作,系统的鲁棒性得到了很大的提高,难点在于,由于系统执行动作的灵活性,需要特定的协调机制来解决各个控制回路,同意执行机构争夺之间的冲突,以便得到有意义的结果。

一文解读自动驾驶关键技术难点

分层递阶式系统的一个结构和反应式体系的结构,都各自有优劣,都难以单独的满足行驶环境复杂多变的使用要求,所以越来越多的行业人士开始研究混合式的体系结构,将两者的优点进行有效的结合,在全局规划的层次上生成面向目标定义的分层式递阶行为,在局部规划的层面上就生成面向目标搜索的反应式体系的行为。

一文解读自动驾驶关键技术难点

04 控制与执行技术

自动驾驶的控制核心技术就是车辆的纵向控制,横向控制,纵向控制及车辆的驱动和制动控制,而横向控制的就是方向盘角度的调整以及轮胎力的控制,实现了纵向和横向自动控制,就可以按给定目标和约束自动控制车运行。

一文解读自动驾驶关键技术难点

车辆按照纵向控制是在行车速度方向上的控制,即车速以及本车与前后车或障碍物距离的自动控制。巡航控制和紧急制动控制都是典型的自动驾驶纵向控制案例。这类控制问题可归结为对电机驱动、发动机、传动和制动系统的控制。各种电机-发动机-传动模型、汽车运行模型和刹车过程模型与不同的控制器算法结合,构成了各种各样的纵向控制模式。

车辆的横向控制就是指垂直于运动方向的控制,目标是控制汽车自动保持期望的行车路线,并在不同的车速、载荷、风阻、路况下有很好的乘坐舒适和稳定。车辆横向控制主要有两种基本设计方法,一种是基于驾驶员模拟的方法(一种是使用用较简单的动力学模型和驾驶员操纵规则设计控制器;另一种是用驾驶员操纵过程的数据训练控制器获取控制算法);另一种是给予汽车横向运动力学模型的控制方法(需要建立精确的汽车横向运动模型。典型模型如单轨模型,该模型认为汽车左右两侧特性相同)

05 总结

除上述介绍的环境感知、精准定位、决策规划和控制执行之外,自动驾驶汽车还涉及到高精度地图、V2X、自动驾驶汽车测试等关键技术。自动驾驶技术是人工智能、高性能芯片、通信技术、传感器技术、车辆控制技术、大数据技术等多领域技术的结合体,落地技术难度大。除此之外,自动驾驶技术落地,还要建立满足自动驾驶要求的基础交通设施,并考虑自动驾驶方面的法律法规等。

以上是一文解读自动驾驶关键技术难点的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1659
14
CakePHP 教程
1416
52
Laravel 教程
1310
25
PHP教程
1258
29
C# 教程
1232
24
为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF? 为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF? Jan 17, 2024 pm 02:57 PM

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

自动驾驶场景中的长尾问题怎么解决? 自动驾驶场景中的长尾问题怎么解决? Jun 02, 2024 pm 02:44 PM

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述 选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述 Jan 26, 2024 am 11:18 AM

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助? Stable Diffusion 3论文终于发布,架构细节大揭秘,对复现Sora有帮助? Mar 06, 2024 pm 05:34 PM

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显着提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。 StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显着降低了使用AI

SIMPL:用于自动驾驶的简单高效的多智能体运动预测基准 SIMPL:用于自动驾驶的简单高效的多智能体运动预测基准 Feb 20, 2024 am 11:48 AM

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

自动驾驶与轨迹预测看这一篇就够了! 自动驾驶与轨迹预测看这一篇就够了! Feb 28, 2024 pm 07:20 PM

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

聊聊端到端与下一代自动驾驶系统,以及端到端自动驾驶的一些误区? 聊聊端到端与下一代自动驾驶系统,以及端到端自动驾驶的一些误区? Apr 15, 2024 pm 04:13 PM

最近一个月由于众所周知的一些原因,非常密集地和行业内的各种老师同学进行了交流。交流中必不可免的一个话题自然是端到端与火爆的特斯拉FSDV12。想借此机会,整理一下在当下这个时刻的一些想法和观点,供大家参考和讨论。如何定义端到端的自动驾驶系统,应该期望端到端解决什么问题?按照最传统的定义,端到端的系统指的是一套系统,输入传感器的原始信息,直接输出任务关心的变量。例如,在图像识别中,CNN相对于传统的特征提取器+分类器的方法就可以称之为端到端。在自动驾驶任务中,输入各种传感器的数据(相机/LiDAR

See all articles