学而思研发面向全球数学爱好者大模型MathGPT
近日,在各家大厂打得如火如荼的「ChatGPT大战」中,学而思也加入其中。
不过,学而思另辟蹊径选择的是自研数学大模型「MathGPT」,以数学领域的解题和讲题算法为核心,并且已经取得了阶段性成果。
对此学而思表示,基于该自研大模型的产品级应用预计会在年内推出,将面向全球数学爱好者和科研机构。
作为公司的核心项目,学而思早在今年春节之前就启动了相应的团队建设、数据、算力准备和技术研发,并直接交由CTO田密负责。
此外,位于美国硅谷的团队建设目前也已经启动,计划成立一支海外算法和工程团队,在全球范围内招募优秀的人工智能专家加入。
MathGPT与大语言模型(LLM)的差异
今年三月,OpenAI正式发布大语言模型GPT-4。随后,国内百度、阿里也推出了各自的大模型产品。
然而,通用语言模型更像一个「文科生」,在语言翻译、摘要、理解和生成等任务上有出色表现,但在数学问题的解决、讲解、问答和推荐方面则存在明显不足——
「解答数学问题经常出错,有些数学问题虽然能够解决,但方法更偏成年人,无法针对适龄孩子的知识结构和认知水平做适配。」
对此,学而思AI团队负责人表示,这种不足是由LLM模型的自身特点决定的。LLM大模型来自对海量语言文本的训练,因此最擅长语言处理。
行业内偏向基于LLM大模型做阅读、写作类应用,但如果想要在数学能力上有突破,就需要研发新的大模型。
因此,学而思决心组建团队专研MathGPT——数学领域大模型,用自己在数学和AI上的多年积累,面向全球范围内的数学爱好者和科研机构,做好AI大模型时代的数学基础工作。
学而思希望通过MathGPT弥补和攻克大语言模型的三个问题:
第一,题目要解对,现在GPT结果经常出现错误;
第二,解题步骤要稳定、清晰,现在GPT的解题步骤每次都不一样,而且生成内容经常很冗余;
第三,解题要讲的有趣、个性化,现在GPT的解释过于「学术」和机械,对孩子的学习体验很不友好。
做MathGPT,学而思凭什么
学而思作为获国家科技部批准的「智慧教育国家新一代人工智能开放创新平台」建设单位,也是教育行业唯一一家人工智能「国家队」成员,在人工智能领域有着多年的深入研究,早在2017年,学而思便成立了AI lab人工智能实验室。
据公开信息显示,基于智慧教育人工智能开放创新平台助力,学而思AI lab获得各类顶级学术会议比赛冠军16项,亚军6项;发表国际期刊和会议高水平学术论文31篇,包含光学字符识别、图像、自然语言处理、语音以及多模态等多领域的学术研究,在计算机视觉顶会以及自然语言顶会中均有多篇论文发表;申请专利220余项,授权专利150余项,软件著作权60余项。
学而思AI lab在各类顶级学术会议比赛获奖情况
「以数学起家」的学而思至今已有20年的数学教学经验,积累了庞大的数学相关数据,这些数据是进行MathGPT训练的必备物料。
另外,学而思的海外业务Think Academy在全球若干国家和地区深受数学爱好者喜欢,学而思的学生在每年的IMO和AMC等国际数学竞赛中表现优异,每年都有多位学生在国际奥林匹克数学竞赛中拿到金牌。
所以,学而思选择在MathGPT方向发力也顺理成章。
另据了解,学而思学习机近期将会上线一款「AI助手」,涵盖作文助手、口语助手、阅读助手、数学助手等相关功能,该AI产品将于5月11日开启内测。
MathGPT的挑战和技术难题
如何利用大语言模型服务各行各业是当下社会的焦点问题。
比如在教育领域,Duolingo、Quizlet、可汗学院等产品主要和OpenAI合作,在GPT大模型上做微调和接口调用,增强原有的产品体验。
但也有一些领域如数学、医学等,对AI的需求是准确、清晰、具备强大的逻辑推理能力,且容错率低,通用LLM目前的性能表现还无法在上述领域取得突破,未来是否可能取得突破尚不清晰。
以数学领域为例,目前市场上有几个主要流派。
比如Google收购的Photomath、微软数学、Mathway、专注数学计算的WolframAlpha等产品,主要利用非LLM的传统AI技术加上数据库的方式解决数学问题。
走AGI路线的公司则尝试让通用LLM「更懂数学」,比如GPT-4在数学任务上比之前的3.5版本性能更好,谷歌旗下的Minerva模型也专门针对数学问题进行调优。
学而思选择了另一条少有人走的路,不基于现有LLM做微调和接口调用、不做通用LLM,而是自研基于专业领域的「数学大模型」MathGPT,致力于打造自主、稳定、可持续、高质量的学习解决方案。
在大语言模型不断进化的浪潮下,不同的技术路线选择孰优孰劣,仍有待讨论和验证。
学而思自研独立的MathGPT大模型是否成立,是否能够超越通用模型在数学任务上的表现,是否更匹配不同人群的数学学习场景,这个问题还需要在创新实践中寻找答案。
随着整个行业的深化发展和越来越多人才参与到这个领域,相信不久的将来就能看到更为成熟的解决方案。
以上是学而思研发面向全球数学爱好者大模型MathGPT的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

数字虚拟币交易平台top10分别是:1. Binance,2. OKX,3. Coinbase,4. Kraken,5. Huobi Global,6. Bitfinex,7. KuCoin,8. Gemini,9. Bitstamp,10. Bittrex,这些平台均提供高安全性和多种交易选项,适用于不同用户需求。

交易所内置量化工具包括:1. Binance(币安):提供Binance Futures量化模块,低手续费,支持AI辅助交易。2. OKX(欧易):支持多账户管理和智能订单路由,提供机构级风控。独立量化策略平台有:3. 3Commas:拖拽式策略生成器,适用于多平台对冲套利。4. Quadency:专业级算法策略库,支持自定义风险阈值。5. Pionex:内置16 预设策略,低交易手续费。垂直领域工具包括:6. Cryptohopper:云端量化平台,支持150 技术指标。7. Bitsgap:

这种开创性的开发将使金融机构能够利用全球认可的ISO20022标准来自动化不同区块链生态系统的银行业务流程。Ease协议是一个企业级区块链平台,旨在通过易用的方式促进广泛采用,今日宣布已成功集成ISO20022消息传递标准,直接将其纳入区块链智能合约。这一开发将使金融机构能够使用全球认可的ISO20022标准,轻松自动化不同区块链生态系统的银行业务流程,该标准正在取代Swift消息传递系统。这些功能将很快在“EaseTestnet”上进行试用。EaseProtocolArchitectDou

数字货币App的前景广阔,具体体现在:1. 技术创新驱动功能升级,通过DeFi与NFT融合及AI与大数据应用提升用户体验;2. 监管合规化趋势,全球框架完善及AML、KYC要求趋严;3. 功能多元化与服务拓展,整合借贷、理财等服务并优化用户体验;4. 用户基数与全球化扩张,预计2025年用户规模突破10亿。

在其最新尝试中,已解决的加密交易所FTX采取了法律行动,以收回债务并偿还客户。在收回债务和偿还客户的最新努力中,已解决的加密交易所FTX已对特定发行人提起法律诉讼。FTX交易和FTX恢复信托基金已针对未能履行其协议的某些代币发行人提起诉讼,以将约定的硬币汇出到交易所。具体来说,重组团队在周一就合规性问题起诉了NFTStarsLimited和OrosemiInc.。FTX正在起诉令牌发行人,以收回到期硬币。FTX曾经是美国最杰出的加密货币交易平台之一。该银行在2022年11月因报道称其创始人山姆·

在币圈中,所谓的三巨头通常指的是三种最具影响力和广泛使用的加密货币。这些加密货币在市场上占据了重要的地位,并在交易量和市值方面都表现出色。同时,虚拟币主流交易所APP也是投资者和交易者进行加密货币交易的重要工具。本文将详细介绍币圈中的三巨头以及推荐前十名的虚拟币主流交易所APP。

排名前十的数字货币交易所分别是:1. Binance,2. OKX,3. Coinbase,4. Kraken,5. Huobi Global,6. Bitfinex,7. KuCoin,8. Gemini,9. Bitstamp,10. Bittrex,这些平台均提供高安全性和多种交易选项,适用于不同用户需求。

AI在Composer中主要通过依赖推荐、依赖冲突解决和代码质量提升来提高开发效率和代码质量。1.AI可以根据项目需求推荐合适的依赖包。2.AI提供智能解决方案来处理依赖冲突。3.AI审查代码并提供优化建议,提升代码质量。通过这些功能,开发者可以更专注于业务逻辑的实现。
