目录
引言
1. AST简介 
2. 创建AST
2.1 Compile函数
2.2 生成ast
 3. 遍历AST
3.1 ast.NodeTransfer
3.2 ast.NodeTransformer
 4.AST应用
4.1 汉字检测
4.2 Closure 检查
首页 后端开发 Python教程 Python Ast抽象语法树应该如何使用?

Python Ast抽象语法树应该如何使用?

May 09, 2023 pm 12:49 PM
python ast

引言

Abstract Syntax Trees即抽象语法树。Ast是python源码到字节码的一种中间产物,借助ast模块可以从语法树的角度分析源码结构。

此外,我们不仅可以修改和执行语法树,还可以将Source生成的语法树unparse成python源码。因此ast给python源码检查、语法分析、修改代码以及代码调试等留下了足够的发挥空间。

1. AST简介 

Python官方提供的CPython解释器对python源码的处理过程如下:

Parse source code into a parse tree (Parser/pgen.c)

Transform parse tree into an Abstract Syntax Tree (Python/ast.c)

Transform AST into a Control Flow Graph (Python/compile.c)

Emit bytecode based on the Control Flow Graph (Python/compile.c)

即实际python代码的处理过程如下:

源代码解析 --> 语法树 --> 抽象语法树(AST) --> 控制流程图 --> 字节码

上述过程在python2.5之后被应用。python源码首先被解析成语法树,随后又转换成抽象语法树。在抽象语法树中我们可以看到源码文件中的python的语法结构。

大部分时间编程可能都不需要用到抽象语法树,但是在特定的条件和需求的情况下,AST又有其特殊的方便性。

下面是一个抽象语法的简单实例。

Module(body=[
    Print(
          dest=None,
          values=[BinOp( left=Num(n=1),op=Add(),right=Num(n=2))],
          nl=True,
 )])
登录后复制

2. 创建AST

2.1 Compile函数

先简单了解一下compile函数。

compile(source, filename, mode[, flags[, dont_inherit]])

  • source -- 字符串或者AST(Abstract Syntax Trees)对象。一般可将整个py文件内容file.read()传入。

  • filename -- 代码文件名称,如果不是从文件读取代码则传递一些可辨认的值。

  • mode -- 指定编译代码的种类。可以指定为 exec, eval, single。

  • flags -- 变量作用域,局部命名空间,如果被提供,可以是任何映射对象。

  • flags和dont_inherit是用来控制编译源码时的标志。

func_def = \
"""
def add(x, y):
    return x + y
print add(3, 5)
"""
登录后复制

使用Compile编译并执行:

>>> cm = compile(func_def, &#39;<string>&#39;, &#39;exec&#39;)
>>> exec cm
>>> 8
登录后复制

上面func_def经过compile编译得到字节码,cm即code对象,

True == isinstance(cm, types.CodeType)。

compile(source, filename, mode, ast.PyCF_ONLY_AST) <==> ast.parse(source, filename='', mode='exec')

2.2 生成ast

使用上面的func_def生成ast.

r_node = ast.parse(func_def)
print astunparse.dump(r_node)    # print ast.dump(r_node)
登录后复制

下面是func_def对应的ast结构:

Module(body=[
    FunctionDef(
        name=&#39;add&#39;,
        args=arguments(
            args=[Name(id=&#39;x&#39;,ctx=Param()),Name(id=&#39;y&#39;,ctx=Param())],
            vararg=None,
            kwarg=None,
            defaults=[]),
        body=[Return(value=BinOp(
            left=Name(id=&#39;x&#39;,ctx=Load()),
            op=Add(),
            right=Name(id=&#39;y&#39;,ctx=Load())))],
        decorator_list=[]),
    Print(
        dest=None,
        values=[Call(
                func=Name(id=&#39;add&#39;,ctx=Load()),
                args=[Num(n=3),Num(n=5)],
                keywords=[],
                starargs=None,
                kwargs=None)],
        nl=True)
  ])
登录后复制

除了ast.dump,有很多dump ast的第三方库,如astunparse, codegen, unparse等。这些第三方库不仅能够以更好的方式展示出ast结构,还能够将ast反向导出python source代码。

module Python version "$Revision$"
{
  mod = Module(stmt* body)| Expression(expr body)
  stmt = FunctionDef(identifier name, arguments args, stmt* body, expr* decorator_list)
        | ClassDef(identifier name, expr* bases, stmt* body, expr* decorator_list)
        | Return(expr? value)
        | Print(expr? dest, expr* values, bool nl)| For(expr target, expr iter, stmt* body, stmt* orelse)
  expr = BoolOp(boolop op, expr* values)
       | BinOp(expr left, operator op, expr right)| Lambda(arguments args, expr body)| Dict(expr* keys, expr* values)| Num(object n) -- a number as a PyObject.
       | Str(string s) -- need to specify raw, unicode, etc?| Name(identifier id, expr_context ctx)
       | List(expr* elts, expr_context ctx) 
        -- col_offset is the byte offset in the utf8 string the parser uses
        attributes (int lineno, int col_offset)
  expr_context = Load | Store | Del | AugLoad | AugStore | Param
  boolop = And | Or 
  operator = Add | Sub | Mult | Div | Mod | Pow | LShift | RShift | BitOr | BitXor | BitAnd | FloorDiv
  arguments = (expr* args, identifier? vararg, identifier? kwarg, expr* defaults)
}
登录后复制

上面是部分摘自官网的 Abstract Grammar,实际遍历ast Node过程中根据Node的类型访问其属性。

3. 遍历AST

python提供了两种方式来遍历整个抽象语法树。

3.1 ast.NodeTransfer

将func_def中的add函数中的加法运算改为减法,同时为函数实现添加调用日志。

  class CodeVisitor(ast.NodeVisitor):
      def visit_BinOp(self, node):
          if isinstance(node.op, ast.Add):
              node.op = ast.Sub()
          self.generic_visit(node)
      def visit_FunctionDef(self, node):
          print &#39;Function Name:%s&#39;% node.name
          self.generic_visit(node)
          func_log_stmt = ast.Print(
              dest = None,
              values = [ast.Str(s = &#39;calling func: %s&#39; % node.name, lineno = 0, col_offset = 0)],
              nl = True,
              lineno = 0,
              col_offset = 0,
          )
          node.body.insert(0, func_log_stmt)
  r_node = ast.parse(func_def)
  visitor = CodeVisitor()
  visitor.visit(r_node)
  # print astunparse.dump(r_node)
  print astunparse.unparse(r_node)
  exec compile(r_node, &#39;<string>&#39;, &#39;exec&#39;)
登录后复制

运行结果:

Function Name:add
def add(x, y):
    print &#39;calling func: add&#39;
    return (x - y)
print add(3, 5)
calling func: add
-2
登录后复制

3.2 ast.NodeTransformer

使用NodeVisitor主要是通过修改语法树上节点的方式改变AST结构,NodeTransformer主要是替换ast中的节点。

既然func_def中定义的add已经被改成一个减函数了,那么我们就彻底一点,把函数名和参数以及被调用的函数都在ast中改掉,并且将添加的函数调用log写的更加复杂一些,争取改的面目全非:-)

  class CodeTransformer(ast.NodeTransformer):
      def visit_BinOp(self, node):
          if isinstance(node.op, ast.Add):
              node.op = ast.Sub()
          self.generic_visit(node)
          return node
      def visit_FunctionDef(self, node):
          self.generic_visit(node)
          if node.name == &#39;add&#39;:
              node.name = &#39;sub&#39;
          args_num = len(node.args.args)
          args = tuple([arg.id for arg in node.args.args])
          func_log_stmt = &#39;&#39;.join(["print &#39;calling func: %s&#39;, " % node.name, "&#39;args:&#39;", ", %s" * args_num % args])
          node.body.insert(0, ast.parse(func_log_stmt))
          return node
      def visit_Name(self, node):
          replace = {&#39;add&#39;: &#39;sub&#39;, &#39;x&#39;: &#39;a&#39;, &#39;y&#39;: &#39;b&#39;}
          re_id = replace.get(node.id, None)
          node.id = re_id or node.id
          self.generic_visit(node)
          return node
  r_node = ast.parse(func_def)
  transformer = CodeTransformer()
  r_node = transformer.visit(r_node)
  # print astunparse.dump(r_node)
  source = astunparse.unparse(r_node)
  print source
  # exec compile(r_node, &#39;<string>&#39;, &#39;exec&#39;)        # 新加入的node func_log_stmt 缺少lineno和col_offset属性
  exec compile(source, &#39;<string>&#39;, &#39;exec&#39;)
  exec compile(ast.parse(source), &#39;<string>&#39;, &#39;exec&#39;)
登录后复制

结果:

def sub(a, b):
    print &#39;calling func: sub&#39;, &#39;args:&#39;, a, b
    return (a - b)
print sub(3, 5)
calling func: sub args: 3 5
-2
calling func: sub args: 3 5
-2
登录后复制

代码中能够清楚的看到两者的区别。这里不再赘述。

4.AST应用

AST模块实际编程中很少用到,但是作为一种源代码辅助检查手段是非常有意义的;语法检查,调试错误,特殊字段检测等。

上面通过为函数添加调用日志的信息是一种调试python源代码的一种方式,不过实际中我们是通过parse整个python文件的方式遍历修改源码。

4.1 汉字检测

下面是中日韩字符的unicode编码范围

CJK Unified Ideographs

Range: 4E00— 9FFF

Number of characters: 20992

Languages: chinese, japanese, korean, vietnamese

使用 unicode 范围 \u4e00 - \u9fff 来判别汉字,注意这个范围并不包含中文字符(e.g. u';' == u'\uff1b') .

下面是一个判断字符串中是否包含中文字符的一个类CNCheckHelper:

  class CNCheckHelper(object):
      # 待检测文本可能的编码方式列表
      VALID_ENCODING = (&#39;utf-8&#39;, &#39;gbk&#39;)
      def _get_unicode_imp(self, value, idx = 0):
          if idx < len(self.VALID_ENCODING):
              try:
                  return value.decode(self.VALID_ENCODING[idx])
              except:
                  return self._get_unicode_imp(value, idx + 1)
      def _get_unicode(self, from_str):
          if isinstance(from_str, unicode):
              return None
          return self._get_unicode_imp(from_str)
      def is_any_chinese(self, check_str, is_strict = True):
          unicode_str = self._get_unicode(check_str)
          if unicode_str:
              c_func = any if is_strict else all
              return c_func(u&#39;\u4e00&#39; <= char <= u&#39;\u9fff&#39; for char in unicode_str)
          return False
登录后复制

接口is_any_chinese有两种判断模式,严格检测只要包含中文字符串就可以检查出,非严格必须全部包含中文。

下面我们利用ast来遍历源文件的抽象语法树,并检测其中字符串是否包含中文字符。

  class CodeCheck(ast.NodeVisitor):
      def __init__(self):
          self.cn_checker = CNCheckHelper()
      def visit_Str(self, node):
          self.generic_visit(node)
          # if node.s and any(u&#39;\u4e00&#39; <= char <= u&#39;\u9fff&#39; for char in node.s.decode(&#39;utf-8&#39;)):
          if self.cn_checker.is_any_chinese(node.s, True):
              print &#39;line no: %d, column offset: %d, CN_Str: %s&#39; % (node.lineno, node.col_offset, node.s)
  project_dir = &#39;./your_project/script&#39;
  for root, dirs, files in os.walk(project_dir):
      print root, dirs, files
      py_files = filter(lambda file: file.endswith(&#39;.py&#39;), files)
      checker = CodeCheck()
      for file in py_files:
          file_path = os.path.join(root, file)
          print &#39;Checking: %s&#39; % file_path
          with open(file_path, &#39;r&#39;) as f:
              root_node = ast.parse(f.read())
              checker.visit(root_node)
登录后复制

上面这个例子比较的简单,但大概就是这个意思。

关于CPython解释器执行源码的过程可以参考官网描述:PEP 339

4.2 Closure 检查

一个函数中定义的函数或者lambda中引用了父函数中的local variable,并且当做返回值返回。特定场景下闭包是非常有用的,但是也很容易被误用。

关于python闭包的概念可以参考我的另一篇文章:理解Python闭包概念

这里简单介绍一下如何借助ast来检测lambda中闭包的引用。代码如下:

  class LambdaCheck(ast.NodeVisitor):
      def __init__(self):
          self.illegal_args_list = []
          self._cur_file = None
          self._cur_lambda_args = []
      def set_cur_file(self, cur_file):
          assert os.path.isfile(cur_file), cur_file
          self._cur_file = os.path.realpath(cur_file)
      def visit_Lambda(self, node):
          """
          lambda 闭包检查原则:
          只需检测lambda expr body中args是否引用了lambda args list之外的参数
          """
          self._cur_lambda_args =[a.id for a in node.args.args]
          print astunparse.unparse(node)
          # print astunparse.dump(node)
          self.get_lambda_body_args(node.body)
          self.generic_visit(node)
      def record_args(self, name_node):
          if isinstance(name_node, ast.Name) and name_node.id not in self._cur_lambda_args:
              self.illegal_args_list.append((self._cur_file, &#39;line no:%s&#39; % name_node.lineno, &#39;var:%s&#39; % name_node.id))
      def _is_args(self, node):
          if isinstance(node, ast.Name):
              self.record_args(node)
              return True
          if isinstance(node, ast.Call):
              map(self.record_args, node.args)
              return True
          return False
      def get_lambda_body_args(self, node):
          if self._is_args(node): return
          # for cnode in ast.walk(node):
          for cnode in ast.iter_child_nodes(node):
              if not self._is_args(cnode):
                  self.get_lambda_body_args(cnode)
登录后复制

遍历工程文件:

  project_dir = &#39;./your project/script&#39;
  for root, dirs, files in os.walk(project_dir):
      py_files = filter(lambda file: file.endswith(&#39;.py&#39;), files)
      checker = LambdaCheck()
      for file in py_files:
          file_path = os.path.join(root, file)
          checker.set_cur_file(file_path)
          with open(file_path, &#39;r&#39;) as f:
              root_node = ast.parse(f.read())
              checker.visit(root_node)
      res = &#39;\n&#39;.join([&#39; ## &#39;.join(info) for info in checker.illegal_args_list])
      print res
登录后复制

由于Lambda(arguments args, expr body)中的body expression可能非常复杂,上面的例子中仅仅处理了比较简单的body expr。可根据自己工程特点修改和扩展检查规则。为了更加一般化可以单独写一个visitor类来遍历lambda节点。

以上是Python Ast抽象语法树应该如何使用?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1657
14
CakePHP 教程
1415
52
Laravel 教程
1309
25
PHP教程
1257
29
C# 教程
1230
24
PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

sublime怎么运行代码python sublime怎么运行代码python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

vscode在哪写代码 vscode在哪写代码 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

notepad 怎么运行python notepad 怎么运行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。

See all articles