关于多元时间序列中的公平性问题
今天给大家介绍一篇2023.1发在arixv的多元时序预测文章,出发点比较有趣:如何提升多变量时间序列的公平性。文中采用的建模方法都是之前在时空预测、Domain Adaptation等中使用过的常规操作,但是对于多变量公平性这个点的提出比较新颖。
- 论文标题:Learning Informative Representation for Fairness-aware Multivariate Time-series Forecasting: A Group-based Perspective
- 下载地址:https://arxiv.org/pdf/2301.11535.pdf
1.多元时间序列的公平性
公平性问题,在机器学习领域中是一个宏观的概念。机器学习中公平性的一种理解是,一个模型对于不同的样本的拟合效果的一致程度。如果一个模型在某些样本上效果很好,另一些样本上效果不好,那么这个模型的公平性就比较差。例如,一个常见的场景是推荐系统中,模型对于头部样本的预测效果优于尾部样本,这就体现了模型对于不同样本的预测效果存在不公平性。
回到多元时间序列预测问题中,公平性指的是模型是否对各个变量的预测效果都比较好。如果模型对于不同变量的预测效果差异很大,那么这个多元时间序列预测模型是不公平的。例如下图中的例子,第一行表格是各种模型在各个变量上预测效果MAE的方差,可以看到不同模型多存在一定程度的不公平性。下图的序列是一个例子,一些序列的预测效果比较好,而另一些序列的预测效果较差。
2.不公平现象的成因和解法
为什么会造成不公平性呢?无论是在多元时间序列中,还是在其他机器学习领域,造成不同样本预测效果差异较大的一大原因是,不同样本的特点不同,模型在训练过程中可能被某些样本的特点主导,导致模型对主导训练的样本预测效果好,而对于非主导样本的预测效果差。
在多元时间序列中,不同的变量,其序列pattern可能存在很大的差异。例如上面图的例子,大部分序列都是平稳的,主导了模型的训练过程。而少数序列呈现出了和其他序列不同的波动性,导致模型在这部分序列上预测效果较差。
如何解决多元时间序列中的不公平现象呢?一种思路是,既然造成不公平现象的原因是不同序列的特点不同,如果能将各个序列之间的共性,以及各个序列之间的差异性分解开,独立进行建模,就能缓解上述问题。
这篇文章就建立在这个思路之上,整体架构是利用聚类的方法将多变量序列分组,并得到每组的共性特征;进一步使用对抗学习的方法,从原始表示中剥离掉各个组特有的信息,得到公共的信息。通过上述过程,实现来了公共信息和序列特有信息的剥离,再基于这两个部分信息进行最终预测。
3、实现细节
整体的模型结构主要包括4个模块:多变量序列关系学习、时空关系网络、序列聚类、分解学习。
多变量序列关系学习
多元时间序列的一个重点是学习各个序列之间的关系。本文采用的是Spatial-Temporal的方法学习这个关系。由于多元时间序列不像很多时空预测任务,各个变量之间的关系可以预先定义好,因此这里使用了邻接矩阵的自动学习方法。具体的计算逻辑为,为每个变量生成一个随机初始化的embedding,然后使用embedding的内积,以及一些后处理,计算两两变量之间的关系,作为邻接矩阵对应位置上的元素,公式如下:
这种自动学习邻接矩阵的方法,在时空预测中很常用,在Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks(KDD 2020)、REST: Reciprocal Framework for Spatiotemporal-coupled Prediction(WWW 2021)等文章中,都采用了这种方式。我在星球文章KDD2020经典时空预测模型MTGNN代码解析中详细介绍过相关模型的原理实现,感兴趣的同学可以进一步阅读。
时空关系网络
有了邻接矩阵后,文中采用了图时序预测模型,对多变量时间序列进行时空编码,得到每个变量序列的表示。具体的模型结构很类似于DCRNN,在GRU基础上,每个单元的计算引入了GCN模块。可以理解为,在正常GRU的每个单元的计算过程中,引入了邻居节点的向量做一次GCN,得到更新后的表示。关于DCRNN的实现代码原理,可以参考DCRNN模型源码解析这篇文章。
序列聚类
在得到每个变量时间序列的表示后,下一步是将这些表示聚类,以此得到各个变量序列的分组,进而提取每组变量特有的信息。文中引入下面的损失函数来指导聚类过程,其中H表示每个变量序列的表示,F表示每个变量的序列跟K个类别的从属关系。
这个损失函数的更新过程需要采用EM算法,即固定序列表示H,优化F,以及固定F,优化H。文中采用的方法是,训练几轮模型得到表示H后,使用SVD更新一次矩阵F。
分解学习
分解学习模块的核心是将各个类别变量的公共表示和私有表示区分开,公共表示指的是各个类簇变量的序列共有的特点,私有表示指的是每个类簇内变量序列独有的特点。为了实现这个目的,文中采用了分解学习和对抗学习的思路,将各个类簇的表示,从原始的序列表示中剥离开。类簇表示代表每个类的特性,剥离后的表示代表所有序列的共性,利用这个共性的表示进行预测,可以实现对各个变量预测的公平性。
文中利用对抗学习的思路,直接计算公共表示和私有表示(也就是聚类得到的每个类簇的表示)的L2距离,以此作为loss反向优化,让公共部分表示和私有表示的差距尽可能拉大。此外,还会增加一个正交约束,让公共表示和私有表示的内积接近0。
4、实验结果
文中的实验主要从公平性和预测效果两个方面进行了对比,对比的模型包括基础时序预测模型(LSTNet、Informer)、图时序预测模型等。在公平性上,采用的是不同变量预测结果的方差,通过对比,本文的方法公平性相比其他模型要有比较明显的提升(如下表)。
在预测效果上,本文提出的模型也基本能够取得和SOTA相当的效果:
5、总结
如何保证模型的公平性,是机器学习很多场景都面临的问题。本文将这一维度的问题引入到了多元时间序列预测中,并利用时空预测、对抗学习的方法进行了比较好的解决。
以上是关于多元时间序列中的公平性问题的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,
