目录
为什么要做这项研究?
从 SOTA 扩散模型中提取数据
首页 科技周边 人工智能 开挖扩散模型小动作,生成图像几乎原版复制训练数据,隐私要暴露了

开挖扩散模型小动作,生成图像几乎原版复制训练数据,隐私要暴露了

Apr 12, 2023 pm 10:22 PM
数据 模型

去噪扩散模型是一类新兴的生成神经网络,通过迭代去噪过程从训练分布中生成图像。与之前的方法(如 GANs 和 VAEs)相比,这类扩散模型产生的样本质量更高,且更容易扩展和控制。因此,经过快速发展,它们已经可以生成高分辨率图像,而公众也对诸如 DALL-E 2 这样的大型模型产生了极大的兴趣。

生成扩散模型的魅力在于它们合成新图像的能力,从表面上看,这些图像不同于训练集中的任何东西。而事实上,过去大规模的训练工作没有发现过拟合会成为问题,隐私敏感领域的研究人员甚至建议可以用扩散模型来保护隐私,通过生成合成示例来生成真实图像。这一系列的工作是在扩散模型没有记忆和重新生成训练数据的假设下进行的。而这样做将违反所有的隐私保障,并滋生模型泛化和数字伪造方面的许多问题。

本文中,来自谷歌、 DeepMind 等机构的研究者证明了 SOTA 扩散模型确实可以记忆和重新生成单个训练示例。

图片

论文地址:https://arxiv.org/pdf/2301.13188v1.pdf

首先,研究提出并实现了图像模型中记忆的新定义。然后,研究设计了分为两阶段的数据提取入侵(data extraction attack),使用标准方法生成图像,并对一些图像进行标记。研究将该方法应用于 Stable Diffusion 和 Imagen,从而提取了 100 多个几乎相同的训练图像副本,这些图像中,既有个人可识别照片也有商标 logo(如图 1)。

图片

为了更好地理解记忆的方式和其中的缘由,研究者在 CIFAR10 上训练了数百个扩散模型,以分析模型精度、超参数、增强和重复数据删除对隐私的影响。扩散模型是研究评估中私密度最低的图像模型形式,它们泄漏的训练数据是 GANs 的两倍之多。更糟的是,研究还发现现有的隐私增强技术无法提供可接受的隐私 - 效用权衡。总的来说,本文强调了日益强大的生成模型和数据隐私之间存在着紧张的关系,并提出了关于扩散模型如何工作以及如何被妥善部署的问题。

为什么要做这项研究?

理解扩散模型如何记忆和重新生成训练数据的背后存在着两个动机。

第一个是了解隐私风险。重新生成从互联网上抓取数据的扩散模型可能会带来与语言模型类似的隐私和版权风险。比方说,已经有人指出,记忆和重新生成受版权保护的文本和源代码存在着潜在的侵权指标。那么同理,复制专业艺术家创作的图像也会被称为数字伪造,艺术界为此展开了一场争论。

第二个是理解泛化。除了数据隐私,理解扩散模型如何以及为什么记忆训练数据有助于理解它们的泛化能力。例如,大规模生成模型的一个常见问题是,它们令人印象深刻的结果是来自真正的生成,还是直接复制和重新混合训练数据的结果。通过研究记忆,可以提供生成模型执行这种数据复制速率的具体经验描述。

从 SOTA 扩散模型中提取数据

从 Stable Diffusion 中提取数据

现在从 Stable Diffusion(最大、最流行的开源扩散模型)中提取训练数据。

本次提取将先前工作的方法应用于图像,包括两个步骤:

1. 使用标准抽样方式的扩散模型并使用前一节的已知 prompt 生成多个示例。

2. 进行推理,将新一代的模型与已记忆的训练模型相分离。

为了评估入侵的有效性,研究从训练数据集中选择了 35 万个重复次数最多的示例,并为每个提示生成 500 个候选图像(总共生成 1.75 亿张图像)。

首先,研究对所有这些生成的图像进行排序,以确定哪些是记忆训练数据生成的图像。然后,将这些生成的每张图像与论文中定义 1 下的训练图像进行比较,并将每张图像注释为提取或未提取。研究发现有 94 张图像被提取,为了确保这些图像不仅是符合某些任意的定义,研究还通过视觉分析手动注释了前 1000 张生成的图像,这些图像要么是记忆的,要么是没有记忆的,并且发现另外 13 张(总共 109 张图像)几乎是训练示例的副本,即使它们不符合研究 L_2 范数定义。图 3 显示了提取图像的子集,这些图像以近乎完美像素的精度再现。

图片

实验还给出了在有给定带注释的有序图像集的情况下,计算曲线,评估提取的图像数量与入侵的假阳性率。入侵异常精确:在 1.75 亿张生成的图像中,可以识别出 50 张 0 假阳性的记忆图像,并且所有的记忆图像都可以以 50% 以上的精度提取。图 4 包含了两种记忆定义的精度 - 召回曲线。

图片

从图像中提取数据

尽管 Stable Diffusion 是目前公开可用的扩散模型中最佳选择,但一些非公开模型使用更大的模型和数据集获得了更强的性能。先前研究发现,较大的模型更容易记住训练数据,因此该研究对 Imagen(一个 20 亿参数的文本 - 图像扩散模型)展开了研究。

令人惊讶的是,研究发现在 Imagen 中入侵非分布图像比在 Stable Diffusion 中更有效。在 Imagen 上,研究尝试提取出 500 张 out-of - distribution(OOD)得分最高的图像。Imagen 记忆并复制了其中 3 个图像(这三个图像在训练数据集中是独有的)。相比之下,当研究将相同的方法应用于 Stable Diffusion 时,即使在尝试提取 10,000 个最离群的样本后,也未能识别任何记忆。因此,在复制和非复制图像上,Imagen 比 Stable Diffusion 的私密性更差。这可能是由于 Imagen 使用的模型比 Stable Diffusion 更大,因此记得的图像也就更多。此外,Imagen 在更小的数据集上进行了更多的迭代训练,这也可以有助于提高记忆水平。

以上是开挖扩散模型小动作,生成图像几乎原版复制训练数据,隐私要暴露了的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1673
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! 开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计! Apr 03, 2024 pm 12:04 PM

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

iPhone上的蜂窝数据互联网速度慢:修复 iPhone上的蜂窝数据互联网速度慢:修复 May 03, 2024 pm 09:01 PM

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles