目录
一. EDA
1.1 输入数据集
1.2 房价分布
1.3 与房价相关的特征
1.4 剔除离群样本
二. 特征工程
2.1 校正特征类型
2.2 填充特征缺失值
2.3 偏度校正
2.4 特征删除和新增
2.6 生成最终训练数据
三. 模型训练
3.1 单一模型
3.2 模型融合-stacking
3.3 模型融合-线性融合
首页 后端开发 Python教程 用Python做一个房价预测小工具!

用Python做一个房价预测小工具!

Apr 12, 2023 am 10:34 AM
python 工具 房价

用Python做一个房价预测小工具!

哈喽,大家好。

这是一个房价预测的案例,来源于 Kaggle 网站,是很多算法初学者的第一道竞赛题目。

该案例有着解机器学习问题的完整流程,包含EDA、特征工程、模型训练、模型融合等。

用Python做一个房价预测小工具!

房价预测流程

下面跟着我,来学习一下该案例。

没有啰嗦的文字,没有多余的代码,只有通俗的讲解。

一. EDA

探索性数据分析(Exploratory Data Analysis,简称EDA) 的目的是让我们对数据集有充分的了解。在这一步,我们探索的内容如下:

用Python做一个房价预测小工具!

EDA内容

1.1 输入数据集

train = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/test.csv')
登录后复制

用Python做一个房价预测小工具!

训练样本

train和test分别是训练集和测试集,分别有 1460 个样本,80 个特征。

SalePrice列代表房价,是我们要预测的。

1.2 房价分布

因为我们任务是预测房价,所以在数据集中核心要关注的就是房价(SalePrice) 一列的取值分布。

sns.distplot(train['SalePrice']);
登录后复制

用Python做一个房价预测小工具!

房价取值分布

从图上可以看出,SalePrice列峰值比较陡,并且峰值向左偏。

也可以直接调用skew()和kurt()函数计算SalePrice具体的偏度和峰度值。

对于偏度和峰度都比较大的情况,建议对SalePrice列取log()进行平滑。

1.3 与房价相关的特征

了解完SalePrice的分布后,我们可以计算 80 个特征与SalePrice的相关关系。

重点关注与SalePrice相关性最强的 10 个特征。

# 计算列之间相关性
corrmat = train.corr()
# 取 top10
k = 10
cols = corrmat.nlargest(k, 'SalePrice')['SalePrice'].index
# 绘图
cm = np.corrcoef(train[cols].values.T)
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()
登录后复制

用Python做一个房价预测小工具!

与SalePrice高度相关的特征

OverallQual(房子材料和装饰)、GrLivArea(地上居住面积)、GarageCars(车库容量)和 TotalBsmtSF(地下室面积)跟SalePrice有很强的相关性。

这些特征在后面做特征工程时也会重点关注。

1.4 剔除离群样本

由于数据集样本量很少,离群点不利于我们后面训练模型。

所以需要计算每个数值特性的离群点,剔除掉离群次数最多的样本。

# 获取数值型特征
numeric_features = train.dtypes[train.dtypes != 'object'].index
# 计算每个特征的离群样本
for feature in numeric_features:
outs = detect_outliers(train[feature], train['SalePrice'],top=5, plot=False)
all_outliers.extend(outs)
# 输出离群次数最多的样本
print(Counter(all_outliers).most_common())
# 剔除离群样本
train = train.drop(train.index[outliers])
登录后复制

detect_outliers()是自定义函数,用sklearn库的LocalOutlierFactor算法计算离群点。

到这里, EDA 就完成了。最后,将训练集和测试集合并,进行下面的特征工程。

y = train.SalePrice.reset_index(drop=True)
train_features = train.drop(['SalePrice'], axis=1)
test_features = test
features = pd.concat([train_features, test_features]).reset_index(drop=True)
登录后复制

features合并了训练集和测试集的特征,是我们下面要处理的数据。

二. 特征工程

用Python做一个房价预测小工具!

特征工程

2.1 校正特征类型

MSSubClass(房屋类型)、YrSold(销售年份)和MoSold(销售月份)是类别型特征,只不过用数字来表示,需要将它们转成文本特征。

features['MSSubClass'] = features['MSSubClass'].apply(str)
features['YrSold'] = features['YrSold'].astype(str)
features['MoSold'] = features['MoSold'].astype(str)
登录后复制

2.2 填充特征缺失值

填充缺失值没有统一的标准,需要根据不同的特征来决定按照什么样的方式来填充。

# Functional:文档提供了典型值 Typ
features['Functional'] = features['Functional'].fillna('Typ') #Typ 是典型值
# 分组填充需要按照相似的特征分组,取众数或中位数
# MSZoning(房屋区域)按照 MSSubClass(房屋)类型分组填充众数
features['MSZoning'] = features.groupby('MSSubClass')['MSZoning'].transform(lambda x: x.fillna(x.mode()[0]))
#LotFrontage(到接到举例)按Neighborhood分组填充中位数
features['LotFrontage'] = features.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median()))
# 车库相关的数值型特征,空代表无,使用0填充空值。
for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):
features[col] = features[col].fillna(0)
登录后复制

2.3 偏度校正

跟探索SalePrice列类似,对偏度高的特征进行平滑。

# skew()方法,计算特征的偏度(skewness)。
skew_features = features[numeric_features].apply(lambda x: skew(x)).sort_values(ascending=False)
# 取偏度大于 0.15 的特征
high_skew = skew_features[skew_features > 0.15]
skew_index = high_skew.index
# 处理高偏度特征,将其转化为正态分布,也可以使用简单的log变换
for i in skew_index:
features[i] = boxcox1p(features[i], boxcox_normmax(features[i] + 1))
登录后复制

2.4 特征删除和新增

对于几乎都是缺失值,或单一取值占比高(99.94%)的特征可以直接删除。

features = features.drop(['Utilities', 'Street', 'PoolQC',], axis=1)
登录后复制

同时,可以融合多个特征,生成新特征。

有时候模型很难学习到特征之间的关系,手动融合特征可以降低模型学习难度,提升效果。

# 将原施工日期和改造日期融合
features['YrBltAndRemod']=features['YearBuilt']+features['YearRemodAdd']
# 将地下室面积、1楼、2楼面积融合
features['TotalSF']=features['TotalBsmtSF'] + features['1stFlrSF'] + features['2ndFlrSF']
登录后复制

可以发现,我们融合的特征都是与SalePrice强相关的特征。

最后简化特征,对分布单调的特征(如:100个数据中有99个的数值是0.9,另1个是0.1),进行01处理。

features['haspool'] = features['PoolArea'].apply(lambda x: 1 if x > 0 else 0)
features['has2ndfloor'] = features['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)
登录后复制

2.6 生成最终训练数据

到这里特征工程就做完了, 我们需要从features中将训练集和测试集重新分离出来,构造最终的训练数据。

X = features.iloc[:len(y), :]
X_sub = features.iloc[len(y):, :]
X = np.array(X.copy())
y = np.array(y)
X_sub = np.array(X_sub.copy())
登录后复制

三. 模型训练

因为SalePrice是数值型且是连续的,所以需要训练一个回归模型。

3.1 单一模型

首先以岭回归(Ridge) 为例,构造一个k折交叉验证模型。

from sklearn.linear_model import RidgeCV
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import KFold
kfolds = KFold(n_splits=10, shuffle=True, random_state=42)
alphas_alt = [14.5, 14.6, 14.7, 14.8, 14.9, 15, 15.1, 15.2, 15.3, 15.4, 15.5]
ridge = make_pipeline(RobustScaler(), RidgeCV(alphas=alphas_alt, cv=kfolds))
登录后复制

岭回归模型有一个超参数alpha,而RidgeCV的参数名是alphas,代表输入一个超参数alpha数组。在拟合模型时,会从alpha数组中选择表现较好某个取值。

由于现在只有一个模型,无法确定岭回归是不是最佳模型。所以我们可以找一些出场率高的模型多试试。

# lasso
lasso = make_pipeline(
RobustScaler(),
LassoCV(max_iter=1e7, alphas=alphas2, random_state=42, cv=kfolds))
#elastic net
elasticnet = make_pipeline(
RobustScaler(),
ElasticNetCV(max_iter=1e7, alphas=e_alphas, cv=kfolds, l1_ratio=e_l1ratio))
#svm
svr = make_pipeline(RobustScaler(), SVR(
C=20,
epsilon=0.008,
gamma=0.0003,
))
#GradientBoosting(展开到一阶导数)
gbr = GradientBoostingRegressor(...)
#lightgbm
lightgbm = LGBMRegressor(...)
#xgboost(展开到二阶导数)
xgboost = XGBRegressor(...)
登录后复制

有了多个模型,我们可以再定义一个得分函数,对模型评分。

#模型评分函数
def cv_rmse(model, X=X):
rmse = np.sqrt(-cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=kfolds))
return (rmse)
登录后复制

以岭回归为例,计算模型得分。

score = cv_rmse(ridge)
print("Ridge score: {:.4f} ({:.4f})n".format(score.mean(), score.std()), datetime.now(), ) #0.1024
登录后复制

运行其他模型发现得分都差不多。

这时候我们可以任选一个模型,拟合,预测,提交训练结果。还是以岭回归为例

# 训练模型
ridge.fit(X, y)
# 模型预测
submission.iloc[:,1] = np.floor(np.expm1(ridge.predict(X_sub)))
# 输出测试结果
submission = pd.read_csv("./data/sample_submission.csv")
submission.to_csv("submission_single.csv", index=False)
登录后复制

submission_single.csv是岭回归预测的房价,我们可以把这个结果上传到 Kaggle 网站查看结果的得分和排名。

3.2 模型融合-stacking

有时候为了发挥多个模型的作用,我们会将多个模型融合,这种方式又被称为集成学习。

stacking 是一种常见的集成学习方法。简单来说,它会定义个元模型,其他模型的输出作为元模型的输入特征,元模型的输出将作为最终的预测结果。

用Python做一个房价预测小工具!

stacking

这里,我们用mlextend库中的StackingCVRegressor模块,对模型做stacking。

stack_gen =
StackingCVRegressor(
regressors=(ridge, lasso, elasticnet, gbr, xgboost, lightgbm),
meta_regressor=xgboost,
use_features_in_secondary=True)
登录后复制

训练、预测的过程与上面一样,这里不再赘述。

3.3 模型融合-线性融合

多模型线性融合的思想很简单,给每个模型分配一个权重(权重加和=1),最终的预测结果取各模型的加权平均值。

# 训练单个模型
ridge_model_full_data = ridge.fit(X, y)
lasso_model_full_data = lasso.fit(X, y)
elastic_model_full_data = elasticnet.fit(X, y)
gbr_model_full_data = gbr.fit(X, y)
xgb_model_full_data = xgboost.fit(X, y)
lgb_model_full_data = lightgbm.fit(X, y)
svr_model_full_data = svr.fit(X, y)
models = [
ridge_model_full_data, lasso_model_full_data, elastic_model_full_data,
gbr_model_full_data, xgb_model_full_data, lgb_model_full_data,
svr_model_full_data, stack_gen_model
]
# 分配模型权重
public_coefs = [0.1, 0.1, 0.1, 0.1, 0.15, 0.1, 0.1, 0.25]
# 线性融合,取加权平均
def linear_blend_models_predict(data_x,models,coefs, bias):
tmp=[model.predict(data_x) for model in models]
tmp = [c*d for c,d in zip(coefs,tmp)]
pres=np.array(tmp).swapaxes(0,1)
pres=np.sum(pres,axis=1)
return pres
登录后复制

到这里,房价预测的案例我们就讲解完了,大家可以自己运行一下,看看不同方式训练出来的模型效果。

回顾整个案例会发现,我们在数据预处理和特征工程上花费了很大心思,虽然机器学习问题模型原理比较难学,但实际过程中往往特征工程花费的心思最多。

以上是用Python做一个房价预测小工具!的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

币圈行情实时数据免费平台推荐前十名发布 币圈行情实时数据免费平台推荐前十名发布 Apr 22, 2025 am 08:12 AM

适合新手的加密货币数据平台有CoinMarketCap和非小号。1. CoinMarketCap提供全球加密货币实时价格、市值、交易量排名,适合新手与基础分析需求。2. 非小号提供中文友好界面,适合中文用户快速筛选低风险潜力项目。

适合新手的数字货币交易App有哪些?一文了解币圈 适合新手的数字货币交易App有哪些?一文了解币圈 Apr 22, 2025 am 08:45 AM

选择适合新手的数字货币交易平台需考虑安全性、易用性、教育资源和费用透明度:1. 优先选择提供冷存储、双重验证和资产保险的平台;2. 界面简洁、操作清晰的App更适合新手;3. 平台应提供教程和市场分析等学习工具;4. 注意交易手续费和提现费等隐性成本。

免费的看盘软件网站有哪些 币圈十大免费看行情软件排名 免费的看盘软件网站有哪些 币圈十大免费看行情软件排名 Apr 22, 2025 am 10:57 AM

币圈十大免费看行情软件排名前三分别是OKX、Binance和gate.io。 1. OKX提供简洁界面和实时数据,支持多种图表和市场分析。 2. Binance功能强大,数据准确,适合各种交易者。 3. gate.io以稳定性和全面性着称,适合长期和短线投资者。

靠谱好用的虚拟币交易所app推荐 币圈十大交易所排行榜最新 靠谱好用的虚拟币交易所app推荐 币圈十大交易所排行榜最新 Apr 22, 2025 pm 01:21 PM

靠谱好用的虚拟币交易所app是:1. Binance,2. OKX,3. Gate.io,4. Coinbase,5. Kraken,6. Huobi Global,7. Bitfinex,8. KuCoin,9. Bittrex,10. Poloniex。这些平台因其交易量、用户体验和安全性等因素被评选为最佳,均提供注册、验证、存款、提款和交易操作功能。

2025数字货币交易平台有哪些 十大数字货币app最新排行榜 2025数字货币交易平台有哪些 十大数字货币app最新排行榜 Apr 22, 2025 pm 03:09 PM

十大虚拟币看盘平台app推荐:1. OKX,2. Binance,3. Gate.io,4. Huobi,5. Coinbase,6. Kraken,7. Bitfinex,8. KuCoin,9. Bybit,10. Bitstamp,这些平台提供实时行情、技术分析工具和用户友好的界面,帮助投资者进行有效的市场分析和交易决策。

meme币交易所排行榜 meme币主流交易所top10盘点 meme币交易所排行榜 meme币主流交易所top10盘点 Apr 22, 2025 am 09:57 AM

最适合交易Meme币的平台包括:1. 币安(Binance),全球最大,流动性高,低手续费;2. 欧意(OKX),高效交易引擎,支持多种Meme币;3. XBIT,去中心化,支持跨链交易;4. 雷迪姆(Solana DEX),低成本,结合Serum订单簿;5. PancakeSwap(BSC DEX),交易费用低,速度快;6. Orca(Solana DEX),用户体验优化;7. Coinbase,安全性高,适合新手;8. 火币(Huobi),亚洲知名,交易对丰富;9. DEXRabbit,智能

币圈十大行情网站的使用技巧与推荐2025 币圈十大行情网站的使用技巧与推荐2025 Apr 22, 2025 am 08:03 AM

国内用户适配方案包括合规渠道和本地化工具。1. 合规渠道:通过OTC平台如Circle Trade进行法币兑换,境内需通过香港或海外平台。2. 本地化工具:使用币圈网获取中文资讯,火币全球站提供元宇宙交易终端。

各大虚拟货币交易平台的特色服务一览 各大虚拟货币交易平台的特色服务一览 Apr 22, 2025 am 08:09 AM

机构投资者应选择Coinbase Pro和Genesis Trading等合规平台,关注冷存储比例与审计透明度;散户投资者应选择币安和火币等大平台,注重用户体验与安全;合规敏感地区的用户可通过Circle Trade和Huobi Global进行法币交易,中国大陆用户需通过合规场外渠道。

See all articles