分析失败的AI项目能学到什么?
AI项目的失败往往跟大麻烦无关,而是由一个个微小细节所决定。面对种种激动人心的可能性,企业在最初启动AI项目时往往信心满满。但具体实施过程中的现实问题很容易熄灭这份热情,导致AI项目被搁置甚至最终失败。而引发失败的常见问题之一,就是组织缺乏对项目长期成本的准确考量。管理层只核算出了项目的初始成本,却没注意到后期的维护与更新开销。
研究企业Cognilytica就对数百个失败的AI项目做出全面分析,意识到很多组织没有意识到AI项目生命周期的连续性。组织通常只会为项目的前几轮迭代分配预算,包括数据准备、清洗、模型训练、数据标记、模型评估和迭代需求等,但却没能为持续实施的迭代工作保持预算供应。另外,组织还必须持续监控模型和数据衰减,根据需求重新训练模型,并考虑未来进一步扩展和迭代。随着时间推移,这必然导致组织对AI项目的投资回报率产生预期偏差甚至失调。
在考量模型的连续迭代成本时,大家到底经历了怎样的思考过程?大多数组织面临的挑战是,他们往往把AI项目视为一次性概念验证或试点应用,并没有考虑预留一部分资金、资源和人力用于模型的持续评估和重新训练。但作为典型的数据驱动项目,AI绝不是一次性投资。人们可能没有意识到,一旦模型被投入生产,他们就需要持续为模型的迭代和开发分配资金、资源和人力。
所以只考虑到模型构建成本的组织,会在项目启动之后遇到各种问题。以AI项目成本和投资回报为例,AI项目所有者需要关注模型的维护成本是多少,以及愿意为后续数据准备和模型迭代再投入多少资源。
而成功AI项目的一大共通之处,就在于其功能不会一次性交付。相反,成功的项目会将AI方案视为持续迭代的循环,并不存在明确的起点和终点。就如同网络安全项目不是一次性项目一样,AI这类数据驱动项目也需要持续运转,确保适应不断变化的现实、不断变化的数据。即使是最初效果极好的模型,也可能随着时间推移而逐渐失效,毕竟数据漂移和模型漂移不可避免。此外,随着组织自身的发展,对AI应用的专业知识和技巧、用例、模型及数据也会持续更新、不断变化。
再有,全球经济和世界格局也在以意想不到的方式震荡波动。于是乎,任何长期规划项目、包括极度复杂的AI项目,都免不了要随之做出调整。过去两年以来,零售商肯定预料不到供应链和劳动力市场出现的冲击,组织也想不到员工会快速转向居家办公。现实世界和用户行为的快速变化必然导致数据发生变化,所以模型也得随之变化。正因为如此,我们才需要对模型开展持续监控和迭代,充分考虑到数据漂移与模型漂移问题。
关于迭代的思考:方法论与ML Ops
当组织计划扩展或增强模型时,也同样需要匹配原有模型迭代机制。例如,如果一家北美企业希望将购买模式预测模型扩展到其他市场,就需要持续迭代模型和数据以适应新的数据需求。
这些因素意味着,组织必须不断为迭代提供额外资金,确保模型能够正确识别数据源及其他关键因素。而获得AI成功的组织也意识到,他们需要遵循经验验证的迭代和敏捷方法,借此顺利完成AI项目扩展。凭借敏捷方法论和以数据为中心的项目管理思路,跨行业数据挖掘流程标准(CRISP-DM)等已经开始增强AI功能,保证迭代项目不至于遗漏掉某些关键步骤。
随着AI市场的不断发展,名为“ML Ops”的新兴机器学习模型运营管理也开始受到追捧。ML Ops专注于模型的开发和使用、机器学习运营及部署的整个生命周期。ML Ops方法及解决方案旨在帮助组织在持续发展的空间当中管理并监控AI模型。ML Ops也可谓站在巨人的肩膀上,充分汲取了DevOps以开发为中心的项目持续迭代/开发思路,以及DataOps对于不断变化的大规模数据集的管理经验。
ML Ops的目标是为组织提供模型漂移、模型治理与版本控制等可见性指引,借此协助AI项目迭代。ML Ops能帮助大家更好地管理这些问题。虽然目前市面上充斥着各种ML Ops工具,但ML Ops与DevOps一样,主要强调的是组织自己做事,而非花钱购买就能无脑解决。Ml Ops最佳实践涵盖模型治理、版本控制、发现、监控、透明度以及模型安全/迭代等一系列环节。ML Ops解决方案还能同时支持同一模型的多个版本,根据特定需求对其进行行为定制。这类解决方案还会跟踪、监控和确定谁有权访问哪些模型,同时严格保障治理及安全管理等原则。
考虑到AI迭代的现实需求,ML Ops已经开始成为整体模型构建与管理环境中的重要组成部分。这些功能未来也有望越来越多地作为整体AI及ML工具集中的一分子,并逐步登陆云解决方案、开源产品及ML机器学习平台等应用场景。
失败是成功之母
ML Ops与AI项目的成功,离不开最佳实践的支持和引导。问题并不会导致AI项目失败,无法准确解决问题才是失败的根源。组织需要将AI项目视为一种迭代且循序渐进的过程,并充分通过AI认知项目管理(CPMAI)方法和不断发展的ML Ops工具探索出适合自己的最佳实践。从大处着眼,从小处着手,持续迭代的理念应当贯穿AI项目的整个生命周期。这些失败案例绝不是故事的终章,而应该成为新的开始。
以上是分析失败的AI项目能学到什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

加密货币市场暴跌引发投资者恐慌,Dogecoin(Doge)成为重灾区之一。其价格大幅下挫,去中心化金融(DeFi)总价值锁定(TVL)也出现显着下降。 “黑色星期一”的抛售潮席卷加密货币市场,Dogecoin首当其冲。其DeFiTVL跌至2023年水平,币价在过去一个月内下跌23.78%。 Dogecoin的DeFiTVL降至272万美元的低点,主要原因是SOSO价值指数下跌26.37%。其他主要DeFi平台,如无聊的Dao和Thorchain,TVL也分别下降了24.04%和20.

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。

Aavenomics是修改AAVE协议令牌并引入令牌回购的提议,已为AAVEDAO实现了一个法定人数。AAVE连锁计划(ACI)创始人马克·泽勒(MarcZeller)在X上宣布了这一点,并指出它标志着该协议的新时代。AAVE连锁倡议(ACI)创始人MarcZeller在X上宣布,Aavenomics提案包括修改AAVE协议令牌和引入令牌回购,已为AAVEDAO实现了法定人数。根据Zeller的说法,这标志着该协议的新时代。AaveDao成员以压倒性的投票支持该提议,即在周三以每周100

选择加密货币交易所的建议:1. 流动性需求,优先选择币安、Gate.io或OKX,因其订单深度与抗波动能力强。2. 合规与安全,Coinbase、Kraken、Gemini具备严格监管背书。3. 创新功能,KuCoin的软质押和Bybit的衍生品设计适合进阶用户。

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

2025年在杠杆交易、安全性和用户体验方面表现突出的平台有:1. OKX,适合高频交易者,提供最高100倍杠杆;2. Binance,适用于全球多币种交易者,提供125倍高杠杆;3. Gate.io,适合衍生品专业玩家,提供100倍杠杆;4. Bitget,适用于新手及社交化交易者,提供最高100倍杠杆;5. Kraken,适合稳健型投资者,提供5倍杠杆;6. Bybit,适用于山寨币探索者,提供20倍杠杆;7. KuCoin,适合低成本交易者,提供10倍杠杆;8. Bitfinex,适合资深玩
