深入浅析JavaScript中的快速排序
介绍
排序是指以特定顺序(数字或字母)排列线性表的元素。排序通常与搜索一起配合使用。
有许多排序算法,而迄今为止最快的算法之一是快速排序(Quicksort)。
快速排序用分治策略对给定的列表元素进行排序。这意味着算法将问题分解为子问题,直到子问题变得足够简单可以直接解决为止。
从算法上讲,这可以用递归或循环实现。但是对于这个问题,用递归法更为自然。
了解快速排序背后的逻辑
先看一下快速排序的工作原理:
- 在数组中选择一个元素,这个元素被称为基准(Pivot)。通常把数组中的第一个或最后一个元素作为基准。
- 然后,重新排列数组的元素,以使基准左侧的有元素都小于基准,而右侧的所有元素都大于基准。这一步称为分区。如果一个元素等于基准,那么在哪一侧都无关紧要。
- 针对基准的左侧和右侧分别重复这一过程,直到对数组完成排序。
接下来通过一个例子理解这些步骤。假设有一个含有未排序元素 [7, -2, 4, 1, 6, 5, 0, -4, 2]
的数组。选择最后一个元素作为基准。数组的分解步骤如下图所示:
在算法的步骤1中被选为基准的元素带颜色。分区后,基准元素始终处于数组中的正确位置。
黑色粗体边框的数组表示该特定递归分支结束时的样子,最后得到的数组只包含一个元素。
最后可以看到该算法的结果排序。
用 JavaScript 实现快速排序
这一算法的主干是“分区”步骤。无论用递归还是循环的方法,这个步骤都是一样的。
正是因为这个特点,首先编写为数组分区的代码 partition()
:
function partition(arr, start, end){ // 以最后一个元素为基准 const pivotValue = arr[end]; let pivotIndex = start; for (let i = start; i < end; i++) { if (arr[i] < pivotValue) { // 交换元素 [arr[i], arr[pivotIndex]] = [arr[pivotIndex], arr[i]]; // 移动到下一个元素 pivotIndex++; } } // 把基准值放在中间 [arr[pivotIndex], arr[end]] = [arr[end], arr[pivotIndex]] return pivotIndex; };
代码以最后一个元素为基准,用变量 pivotIndex
来跟踪“中间”位置,这个位置左侧的所有元素都比 pivotValue
小,而右侧的元素都比 pivotValue
大。
最后一步把基准(最后一个元素)与 pivotIndex
交换。
递归实现
在实现了 partition()
函数之后,我们必须递归地解决这个问题,并应用分区逻辑以完成其余步骤:
function quickSortRecursive(arr, start, end) { // 终止条件 if (start >= end) { return; } // 返回 pivotIndex let index = partition(arr, start, end); // 将相同的逻辑递归地用于左右子数组 quickSort(arr, start, index - 1); quickSort(arr, index + 1, end); }
在这个函数中首先对数组进行分区,之后对左右两个子数组进行分区。只要这个函数收到一个不为空或有多个元素的数组,则将重复该过程。
空数组和仅包含一个元素的数组被视为已排序。
最后用下面的例子进行测试:
array = [7, -2, 4, 1, 6, 5, 0, -4, 2] quickSortRecursive(array, 0, array.length - 1) console.log(array)
输出:
-4,-2,0,1,2,4,5,6,7
循环实现
快速排序的递归方法更加直观。但是用循环实现快速排序是一个相对常见的面试题。
与大多数的递归到循环的转换方案一样,最先想到的是用栈来模拟递归调用。这样做可以重用一些我们熟悉的递归逻辑,并在循环中使用。
我们需要一种跟踪剩下的未排序子数组的方法。一种方法是简单地把“成对”的元素保留在堆栈中,用来表示给定未排序子数组的 start
和 end
。
JavaScript 没有显式的栈数据结构,但是数组支持 push()
和 pop()
函数。但是不支持 peek()
函数,所以必须用 stack [stack.length-1]
手动检查栈顶。
我们将使用与递归方法相同的“分区”功能。看看如何编写Quicksort部分:
function quickSortIterative(arr) { // 用push()和pop()函数创建一个将作为栈使用的数组 stack = []; // 将整个初始数组做为“未排序的子数组” stack.push(0); stack.push(arr.length - 1); // 没有显式的peek()函数 // 只要存在未排序的子数组,就重复循环 while(stack[stack.length - 1] >= 0){ // 提取顶部未排序的子数组 end = stack.pop(); start = stack.pop(); pivotIndex = partition(arr, start, end); // 如果基准的左侧有未排序的元素, // 则将该子数组添加到栈中,以便稍后对其进行排序 if (pivotIndex - 1 > start){ stack.push(start); stack.push(pivotIndex - 1); } // 如果基准的右侧有未排序的元素, // 则将该子数组添加到栈中,以便稍后对其进行排序 if (pivotIndex + 1 < end){ stack.push(pivotIndex + 1); stack.push(end); } } }
以下是测试代码:
ourArray = [7, -2, 4, 1, 6, 5, 0, -4, 2] quickSortIterative(ourArray) console.log(ourArray)
输出:
-4,-2,0,1,2,4,5,6,7
可视化演示
当涉及到排序算法时,将其可视化能帮我们直观的了解它们是怎样运作的,下面这个例子搬运自维基百科:
在图中也把最后一个元素作为基准。给定数组分区后,递归遍历左侧,直到将其完全排序为止。然后对右侧进行排序。
快速排序的效率
现在讨论它的时间和空间复杂度。快速排序在最坏情况下的时间复杂度是 $O(n^2)$。平均时间复杂度为 $O(n\log n)$。通常,使用随机版本的快速排序可以避免最坏的情况。
快速排序算法的弱点是基准的选择。每选择一次错误的基准(大于或小于大多数元素的基准)都会带来最坏的时间复杂度。在重复选择基准时,如果元素值小于或大于该元素的基准时,时间复杂度为 $O(n\log n)$。
根据经验可以观察到,无论采用哪种数据基准选择策略,快速排序的时间复杂度都倾向于具有 $O(n\log n)$ 。
快速排序不会占用任何额外的空间(不包括为递归调用保留的空间)。这种算法被称为in-place算法,不需要额外的空间。
更多编程相关知识,请访问:编程入门!!
以上是深入浅析JavaScript中的快速排序的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

PHP与Vue:完美搭档的前端开发利器在当今互联网高速发展的时代,前端开发变得愈发重要。随着用户对网站和应用的体验要求越来越高,前端开发人员需要使用更加高效和灵活的工具来创建响应式和交互式的界面。PHP和Vue.js作为前端开发领域的两个重要技术,搭配起来可以称得上是完美的利器。本文将探讨PHP和Vue的结合,以及详细的代码示例,帮助读者更好地理解和应用这两

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

Go语言作为一种快速、高效的编程语言,在后端开发领域广受欢迎。然而,很少有人将Go语言与前端开发联系起来。事实上,使用Go语言进行前端开发不仅可以提高效率,还能为开发者带来全新的视野。本文将探讨使用Go语言进行前端开发的可能性,并提供具体的代码示例,帮助读者更好地了解这一领域。在传统的前端开发中,通常会使用JavaScript、HTML和CSS来构建用户界面

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像
