详解Java细粒度锁实现的3种方式的示例代码
最近在工作上碰见了一些高并发的场景需要加锁来保证业务逻辑的正确性,并且要求加锁后性能不能受到太大的影响。初步的想法是通过数据的时间戳,id等关键字来加锁,从而保证不同类型数据处理的并发性。而java自身api提供的锁粒度太大,很难同时满足这些需求,于是自己动手写了几个简单的扩展…
1. 分段锁
借鉴concurrentHashMap的分段思想,先生成一定数量的锁,具体使用的时候再根据key来返回对应的lock。这是几个实现里最简单,性能最高,也是最终被采用的锁策略,代码如下:
/** * 分段锁,系统提供一定数量的原始锁,根据传入对象的哈希值获取对应的锁并加锁 * 注意:要锁的对象的哈希值如果发生改变,有可能导致锁无法成功释放!!! */ public class SegmentLock<T> { private Integer segments = 16;//默认分段数量 private final HashMap<Integer, ReentrantLock> lockMap = new HashMap<>(); public SegmentLock() { init(null, false); } public SegmentLock(Integer counts, boolean fair) { init(counts, fair); } private void init(Integer counts, boolean fair) { if (counts != null) { segments = counts; } for (int i = 0; i < segments; i++) { lockMap.put(i, new ReentrantLock(fair)); } } public void lock(T key) { ReentrantLock lock = lockMap.get(key.hashCode() % segments); lock.lock(); } public void unlock(T key) { ReentrantLock lock = lockMap.get(key.hashCode() % segments); lock.unlock(); } }
2. 哈希锁
上述分段锁的基础上发展起来的第二种锁策略,目的是实现真正意义上的细粒度锁。每个哈希值不同的对象都能获得自己独立的锁。在测试中,在被锁住的代码执行速度飞快的情况下,效率比分段锁慢 30% 左右。如果有长耗时操作,感觉表现应该会更好。代码如下:
public class HashLock<T> { private boolean isFair = false; private final SegmentLock<T> segmentLock = new SegmentLock<>();//分段锁 private final ConcurrentHashMap<T, LockInfo> lockMap = new ConcurrentHashMap<>(); public HashLock() { } public HashLock(boolean fair) { isFair = fair; } public void lock(T key) { LockInfo lockInfo; segmentLock.lock(key); try { lockInfo = lockMap.get(key); if (lockInfo == null) { lockInfo = new LockInfo(isFair); lockMap.put(key, lockInfo); } else { lockInfo.count.incrementAndGet(); } } finally { segmentLock.unlock(key); } lockInfo.lock.lock(); } public void unlock(T key) { LockInfo lockInfo = lockMap.get(key); if (lockInfo.count.get() == 1) { segmentLock.lock(key); try { if (lockInfo.count.get() == 1) { lockMap.remove(key); } } finally { segmentLock.unlock(key); } } lockInfo.count.decrementAndGet(); lockInfo.unlock(); } private static class LockInfo { public ReentrantLock lock; public AtomicInteger count = new AtomicInteger(1); private LockInfo(boolean fair) { this.lock = new ReentrantLock(fair); } public void lock() { this.lock.lock(); } public void unlock() { this.lock.unlock(); } } }
3. 弱引用锁
哈希锁因为引入的分段锁来保证锁创建和销毁的同步,总感觉有点瑕疵,所以写了第三个锁来寻求更好的性能和更细粒度的锁。这个锁的思想是借助java的弱引用来创建锁,把锁的销毁交给jvm的垃圾回收,来避免额外的消耗。
有点遗憾的是因为使用了ConcurrentHashMap作为锁的容器,所以没能真正意义上的摆脱分段锁。这个锁的性能比 HashLock 快10% 左右。锁代码:
/** * 弱引用锁,为每个独立的哈希值提供独立的锁功能 */ public class WeakHashLock<T> { private ConcurrentHashMap<T, WeakLockRef<T, ReentrantLock>> lockMap = new ConcurrentHashMap<>(); private ReferenceQueue<ReentrantLock> queue = new ReferenceQueue<>(); public ReentrantLock get(T key) { if (lockMap.size() > 1000) { clearEmptyRef(); } WeakReference<ReentrantLock> lockRef = lockMap.get(key); ReentrantLock lock = (lockRef == null ? null : lockRef.get()); while (lock == null) { lockMap.putIfAbsent(key, new WeakLockRef<>(new ReentrantLock(), queue, key)); lockRef = lockMap.get(key); lock = (lockRef == null ? null : lockRef.get()); if (lock != null) { return lock; } clearEmptyRef(); } return lock; } @SuppressWarnings("unchecked") private void clearEmptyRef() { Reference<? extends ReentrantLock> ref; while ((ref = queue.poll()) != null) { WeakLockRef<T, ? extends ReentrantLock> weakLockRef = (WeakLockRef<T, ? extends ReentrantLock>) ref; lockMap.remove(weakLockRef.key); } } private static final class WeakLockRef<T, K> extends WeakReference<K> { final T key; private WeakLockRef(K referent, ReferenceQueue<? super K> q, T key) { super(referent, q); this.key = key; } } }
后记
最开始想借助 locksupport 和 AQS 来实现细粒度锁,写着写着发现正在实现的东西和java 原生的锁区别不大,于是放弃改为对java自带锁的封装,浪费了不少时间。
实际上在实现了这些细粒度锁之后,又有了新的想法,比如可以通过分段思想将数据提交给专门的线程来处理,可以减少大量线程的阻塞时间,留待日后探索…
以上是详解Java细粒度锁实现的3种方式的示例代码的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP是一种广泛应用于服务器端的脚本语言,特别适合web开发。1.PHP可以嵌入HTML,处理HTTP请求和响应,支持多种数据库。2.PHP用于生成动态网页内容,处理表单数据,访问数据库等,具有强大的社区支持和开源资源。3.PHP是解释型语言,执行过程包括词法分析、语法分析、编译和执行。4.PHP可以与MySQL结合用于用户注册系统等高级应用。5.调试PHP时,可使用error_reporting()和var_dump()等函数。6.优化PHP代码可通过缓存机制、优化数据库查询和使用内置函数。7

PHP和Python各有优势,选择应基于项目需求。1.PHP适合web开发,语法简单,执行效率高。2.Python适用于数据科学和机器学习,语法简洁,库丰富。

Java 8引入了Stream API,提供了一种强大且表达力丰富的处理数据集合的方式。然而,使用Stream时,一个常见问题是:如何从forEach操作中中断或返回? 传统循环允许提前中断或返回,但Stream的forEach方法并不直接支持这种方式。本文将解释原因,并探讨在Stream处理系统中实现提前终止的替代方法。 延伸阅读: Java Stream API改进 理解Stream forEach forEach方法是一个终端操作,它对Stream中的每个元素执行一个操作。它的设计意图是处

PHP适合web开发,特别是在快速开发和处理动态内容方面表现出色,但不擅长数据科学和企业级应用。与Python相比,PHP在web开发中更具优势,但在数据科学领域不如Python;与Java相比,PHP在企业级应用中表现较差,但在web开发中更灵活;与JavaScript相比,PHP在后端开发中更简洁,但在前端开发中不如JavaScript。

PHP和Python各有优势,适合不同场景。1.PHP适用于web开发,提供内置web服务器和丰富函数库。2.Python适合数据科学和机器学习,语法简洁且有强大标准库。选择时应根据项目需求决定。

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP成为许多网站首选技术栈的原因包括其易用性、强大社区支持和广泛应用。1)易于学习和使用,适合初学者。2)拥有庞大的开发者社区,资源丰富。3)广泛应用于WordPress、Drupal等平台。4)与Web服务器紧密集成,简化开发部署。

PHP适用于Web开发和内容管理系统,Python适合数据科学、机器学习和自动化脚本。1.PHP在构建快速、可扩展的网站和应用程序方面表现出色,常用于WordPress等CMS。2.Python在数据科学和机器学习领域表现卓越,拥有丰富的库如NumPy和TensorFlow。
