python实现批量监控网站详解及实例
本文给大家分享的是一个非常实用的,python实现多网站的可用性监控的脚本,并附上核心点解释,有相同需求的小伙伴可以参考下
">
最近又新上了一部分站点,随着站点的增多,管理复杂性也上来了,俗话说:人多了不好带,我发现站点多了也不好管,因为这些站点里有重要的也有不重要的,重要核心的站点当然就管理的多一些,像一些万年都不出一次问题的,慢慢就被自己都淡忘了,冷不丁那天出个问题,还的手忙脚乱的去紧急处理,所以规范的去管理这些站点是很有必要的,今天我们就做第一步,不管大站小站,先统一把监控做起来,先不说业务情况,最起码那个站点不能访问了,要第一时间报出来,别等着业务方给你反馈,就显得我们不够专业了,那接下来我们看看如果用python实现多网站的可用性监控,脚本如下:
#!/usr/bin/env python import pickle, os, sys, logging from httplib import HTTPConnection, socket from smtplib import SMTP def email_alert(message, status): fromaddr = 'xxx@163.com' toaddrs = 'xxxx@qq.com' server = SMTP('smtp.163.com:25') server.starttls() server.login('xxxxx', 'xxxx') server.sendmail(fromaddr, toaddrs, 'Subject: %s\r\n%s' % (status, message)) server.quit() def get_site_status(url): response = get_response(url) try: if getattr(response, 'status') == 200: return 'up' except AttributeError: pass return 'down' def get_response(url): try: conn = HTTPConnection(url) conn.request('HEAD', '/') return conn.getresponse() except socket.error: return None except: logging.error('Bad URL:', url) exit(1) def get_headers(url): response = get_response(url) try: return getattr(response, 'getheaders')() except AttributeError: return 'Headers unavailable' def compare_site_status(prev_results): def is_status_changed(url): status = get_site_status(url) friendly_status = '%s is %s' % (url, status) print friendly_status if urlin prev_resultsand prev_results[url] != status: logging.warning(status) email_alert(str(get_headers(url)), friendly_status) prev_results[url] = status return is_status_changed def is_internet_reachable(): if get_site_status('www.baidu.com') == 'down' and get_site_status('www.sohu.com') == 'down': return False return True def load_old_results(file_path): pickledata = {} if os.path.isfile(file_path): picklefile = open(file_path, 'rb') pickledata = pickle.load(picklefile) picklefile.close() return pickledata def store_results(file_path, data): output = open(file_path, 'wb') pickle.dump(data, output) output.close() def main(urls): logging.basicConfig(level=logging.WARNING, filename='checksites.log', format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') pickle_file = 'data.pkl' pickledata = load_old_results(pickle_file) print pickledata if is_internet_reachable(): status_checker = compare_site_status(pickledata) map(status_checker, urls) else: logging.error('Either the world ended or we are not connected to the net.') store_results(pickle_file, pickledata) if __name__ == '__main__': main(sys.argv[1:])
脚本核心点解释:
1、getattr()是python的内置函数,接收一个对象,可以根据对象属性返回对象的值。
2、compare_site_status()函数是返回的是一个内部定义的函数。
3、map(),需要2个参数,一个是函数,一个是序列,功能就是将序列中的每个元素应用函数方法。
以上是python实现批量监控网站详解及实例的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。
