Python json模块使用实例
实际上JSON就是Python字典的字符串表示,但是字典作为一个复杂对象是无法直接传递,所以需要将其转换成字符串形式.转换的过程也是一种序列化过程.
用json.dumps序列化为json字符串格式
>>> import json >>> dic {'Connection': ['keep-alive'], 'Host': ['127.0.0.1:5000'], 'Cache-Control': ['max-age=0']} >>> jdict = json.dumps({'Connection': ['keep-alive'], 'Host': ['127.0.0.1:5000'], 'Cache-Control': ['max-age=0']}) >>> print jdict {"Connection": ["keep-alive"], "Host": ["127.0.0.1:5000"], "Cache-Control": ["max-age=0"]}
虽然dic和jdict打印的字符串是相同的,但是实际它们的类型是不一样的.dic是字典类型,jdict是字符串类型
<type 'dict'> >>> type(jdic) >>> type(jdict) <type 'str'>
可以用json.dumps序列化列表为json字符串格式
>>> list = [1, 4, 3, 2, 5] >>> jlist = json.dumps(list) >>> print jlist [1, 4, 3, 2, 5]
list和jlist类型同样是不一样的
>>> type(list) <type 'list'> >>> type(jlist) <type 'str'>
json.dumps有如下多种参数
json.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, encoding="utf-8", default=None, sort_keys=False, **kw)
key排序
>>> print json.dumps({1:'a', 4:'b', 3:'c', 2:'d', 5:'f'},sort_keys=True) {"1": "a", "2": "d", "3": "c", "4": "b", "5": "f"}
格式对齐
>>> print json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4) { "4": 5, "6": 7 }
指定分隔符
>>> json.dumps([1,2,3,{'4': 5, '6': 7}], separators=(',',':')) '[1,2,3,{"4":5,"6":7}]'
用json.dump序列化到文件对象中
>>> json.dump({'4': 5, '6': 7}, open('savejson.txt', 'w')) >>> print open('savejson.txt').readlines() ['{"4": 5, "6": 7}']
json.dump参数和json.dumps类似
json.dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, encoding="utf-8", default=None, sort_keys=False, **kw)
json.loads把json字符串反序列化为python对象
函数签名为:
json.loads(s[, encoding[, cls[, object_hook[, parse_float[, parse_int[, parse_constant[, object_pairs_hook[, **kw]]]]]]]])
注意这里的”s”必须是字符串,反序列化后为unicode字符
>>> dobj = json.loads('{"name":"aaa", "age":18}') >>> type(dobj) <type 'dict'> >>> print dobj {u'age': 18, u'name': u'aaa'}
json.load从文件中反序列化为python对象
签名为:
json.load(fp[, encoding[, cls[, object_hook[, parse_float[, parse_int[, parse_constant[, object_pairs_hook[, **kw]]]]]]]])
实例:
>>> fobj = json.load(open('savejson.txt')) >>> print fobj {u'4': 5, u'6': 7} >>> type(fobj) <type 'dict'>
更多Python json模块使用实例相关文章请关注PHP中文网!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
