目录
The classification conundrum
The R.E.D. algorithm
How it works
Greedy subset selection with least similar elements
Semi-supervised classification with noise oversampling
Proxy active learning via an LLM agent
首页 科技周边 人工智能 R.E.D。:与专家代表团的缩放文本分类

R.E.D。:与专家代表团的缩放文本分类

Mar 22, 2025 am 10:33 AM

With the new age of problem-solving augmented by Large Language Models (LLMs), only a handful of problems remain that have subpar solutions. Most classification problems (at a PoC level) can be solved by leveraging LLMs at 70–90% Precision/F1 with just good prompt engineering techniques, as well as adaptive in-context-learning (ICL) examples.

What happens when you want to consistently achieve performancehigher than that — when prompt engineering no longer suffices?

The classification conundrum

Text classification is one of the oldest and most well-understood examples of supervised learning. Given this premise, it shouldreallynot be hard to build robust, well-performing classifiers that handle a large number of input classes, right…?

Welp. It is.

It actually has to do a lot more with the ‘constraints’ that the algorithm is generally expected to work under:

  • low amount of training data per class
  • high classification accuracy (that plummets as you add more classes)
  • possible addition ofnew classesto an existing subset of classes
  • quick training/inference
  • cost-effectiveness
  • (potentially) really large number of training classes
  • (potentially) endlessrequiredretraining ofsomeclasses due to data drift, etc.

Ever tried building a classifier beyond a few dozen classes under these conditions? (I mean, even GPT could probably do a great job up to ~30 text classes with just a few samples…)

Considering you take the GPT route — If you have more than a couple dozen classes or a sizeable amount of data to be classified, you are gonna have to reach deep into your pockets with the system prompt, user prompt, few shot example tokens that you will need to classifyone sample.That is after making peace with the throughput of the API, even if you are running async queries.

In applied ML, problems like these are generally tricky to solve since they don’t fully satisfy the requirements of supervised learning or aren’t cheap/fast enough to be run via an LLM. This particular pain point is what the R.E.D algorithm addresses: semi-supervised learning, when the training data per class is not enough to build (quasi)traditional classifiers.

The R.E.D. algorithm

R.E.D: Recursive Expert Delegationis a novel framework that changes how we approach text classification. This is an applied ML paradigm — i.e., there is nofundamentally differentarchitecture to what exists, but its a highlight reel of ideas that work best to build something that is practical and scalable.

In this post, we will be working through a specific example where we have a large number of text classes (100–1000), each class only has few samples (30–100), and there are a non-trivial number of samples to classify (10,000–100,000). We approach this as asemi-supervised learningproblem via R.E.D.

Let’s dive in.

How it works

R.E.D。:与专家代表团的缩放文本分类

Instead of having a single classifier classify between a large number of classes, R.E.D. intelligently:

  1. Divides and conquers— Break the label space (large number of input labels) into multiple subsets of labels. This is a greedy label subset formation approach.
  2. Learns efficiently— Trains specialized classifiers for each subset. This step focuses on building a classifier that oversamples on noise, where noise is intelligently modeled as data fromother subsets.
  3. Delegates to an expert— Employes LLMs as expert oracles for specific label validation and correction only, similar to having a team of domain experts. Using an LLM as a proxy, it empirically ‘mimics’howa human expert validates an output.
  4. Recursive retraining— Continuously retrains with fresh samples added back from the expert until there are no more samples to be added/a saturation from information gain is achieved

The intuition behind it is not very hard to grasp:Active Learningemploys humans as domain experts to consistently ‘correct’ or ‘validate’ the outputs from an ML model, with continuous training. This stops when the model achieves acceptable performance. We intuit and rebrand the same, with a few clever innovations that will be detailed in a research pre-print later.

Let’s take a deeper look…

Greedy subset selection with least similar elements

When the number of input labels (classes) is high, the complexity of learning a linear decision boundary between classes increases. As such, the quality of the classifier deteriorates as the number of classes increases. This is especially true when the classifier does not have enoughsamplesto learn from — i.e. each of the training classes has only a few samples.

This is very reflective of a real-world scenario, and the primary motivation behind the creation of R.E.D.

Some ways of improving a classifier’s performance under these constraints:

  • Restrictthe number of classes a classifier needs to classify between
  • Make the decision boundary between classes clearer, i.e., train the classifier onhighly dissimilar classes

Greedy Subset Selection does exactly this — since the scope of the problem is Text Classification, we form embeddings of the training labels, reduce their dimensionality via UMAP, then formSsubsets from them. Each of theSsubsets has elements asntraining labels. We pick training labels greedily, ensuring that every label we pick for the subset is the most dissimilar label w.r.t. the other labels that exist in the subset:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity


def avg_embedding(candidate_embeddings):
    return np.mean(candidate_embeddings, axis=0)

def get_least_similar_embedding(target_embedding, candidate_embeddings):
    similarities = cosine_similarity(target_embedding, candidate_embeddings)
    least_similar_index = np.argmin(similarities)  # Use argmin to find the index of the minimum
    least_similar_element = candidate_embeddings[least_similar_index]
    return least_similar_element


def get_embedding_class(embedding, embedding_map):
    reverse_embedding_map = {value: key for key, value in embedding_map.items()}
    return reverse_embedding_map.get(embedding)  # Use .get() to handle missing keys gracefully


def select_subsets(embeddings, n):
    visited = {cls: False for cls in embeddings.keys()}
    subsets = []
    current_subset = []

    while any(not visited[cls] for cls in visited):
        for cls, average_embedding in embeddings.items():
            if not current_subset:
                current_subset.append(average_embedding)
                visited[cls] = True
            elif len(current_subset) >= n:
                subsets.append(current_subset.copy())
                current_subset = []
            else:
                subset_average = avg_embedding(current_subset)
                remaining_embeddings = [emb for cls_, emb in embeddings.items() if not visited[cls_]]
                if not remaining_embeddings:
                    break # handle edge case
                
                least_similar = get_least_similar_embedding(target_embedding=subset_average, candidate_embeddings=remaining_embeddings)

                visited_class = get_embedding_class(least_similar, embeddings)

                
                if visited_class is not None:
                  visited[visited_class] = True


                current_subset.append(least_similar)
    
    if current_subset:  # Add any remaining elements in current_subset
        subsets.append(current_subset)
        

    return subsets
登录后复制

the result of this greedy subset sampling is all the training labels clearly boxed into subsets, where each subset has at most onlynclasses. This inherently makes the job of a classifier easier, compared to the originalSclasses it would have to classify between otherwise!

Semi-supervised classification with noise oversampling

Cascade this after the initial label subset formation — i.e., this classifier is only classifying between a givensubsetof classes.

Picture this: when you have low amounts of training data, you absolutely cannot create a hold-out set that is meaningful for evaluation. Should you do it at all? How do you know if your classifier is working well?

We approached this problem slightly differently — we defined the fundamental job of a semi-supervised classifier to bepre-emptive classification of a sample. This means that regardless of what a sample gets classified as it will be ‘verified’ and ‘corrected’ at a later stage: this classifier only needs to identify what needs to be verified.

As such, we created a design for how it would treat its data:

  • n+1classes, where the last class isnoise
  • noise:data from classes that are NOT in the current classifier’s purview. The noise class is oversampled to be 2x the average size of the data for the classifier’s labels

Oversampling on noise is a faux-safety measure, to ensure that adjacent data that belongs to another class is most likely predicted as noise instead of slipping through for verification.

How do you check if this classifier is working well — in our experiments, we define this as the number of ‘uncertain’ samples in a classifier’s prediction. Using uncertainty sampling and information gain principles, we were effectively able to gauge if a classifier is ‘learning’ or not, which acts as a pointer towards classification performance. This classifier is consistently retrained unless there is an inflection point in the number of uncertain samples predicted, or there is only a delta of information being added iteratively by new samples.

Proxy active learning via an LLM agent

This is the heart of the approach — using an LLM as a proxy for a human validator. The human validator approach we are talking about is Active Labelling

Let’s get an intuitive understanding of Active Labelling:

  • Use an ML model to learn on a sample input dataset, predict on a large set of datapoints
  • For the predictions given on the datapoints, a subject-matter expert (SME) evaluates ‘validity’ of predictions
  • Recursively, new ‘corrected’ samples are added as training data to the ML model
  • The ML model consistently learns/retrains, and makes predictions until the SME is satisfied by the quality of predictions

For Active Labelling to work, there are expectations involved for an SME:

  • when we expect a human expert to ‘validate’ an output sample, the expert understands what the task is
  • a human expert will use judgement to evaluate ‘what else’ definitely belongs to a labelLwhen deciding if a new sample should belong toL

Given these expectations and intuitions, we can ‘mimic’ these using an LLM:

  • give the LLM an ‘understanding’ of what each label means. This can be done by using a larger model tocritically evaluate the relationship between {label: data mapped to label} for all labels. In our experiments, this was done using a32B variant of DeepSeekthat was self-hosted.
R.E.D。:与专家代表团的缩放文本分类
  • Instead of predicting what is the correct label,leverage the LLM to identify if a prediction is ‘valid’ or ‘invalid’ only(i.e., LLM only has to answer a binary query).
  • Reinforce the idea of what other valid samples for the label look like,i.e., for every pre-emptively predicted label for a sample, dynamically sourcecclosest samples in its training (guaranteed valid) set when prompting for validation.

The result? A cost-effective framework that relies on a fast, cheap classifier to make pre-emptive classifications, and an LLM that verifies these using (meaning of the label + dynamically sourced training samples that are similar to the current classification):

import math

def calculate_uncertainty(clf, sample):
    predicted_probabilities = clf.predict_proba(sample.reshape(1, -1))[0]  # Reshape sample for predict_proba
    uncertainty = -sum(p * math.log(p, 2) for p in predicted_probabilities)
    return uncertainty


def select_informative_samples(clf, data, k):
    informative_samples = []
    uncertainties = [calculate_uncertainty(clf, sample) for sample in data]

    # Sort data by descending order of uncertainty
    sorted_data = sorted(zip(data, uncertainties), key=lambda x: x[1], reverse=True)

    # Get top k samples with highest uncertainty
    for sample, uncertainty in sorted_data[:k]:
        informative_samples.append(sample)

    return informative_samples


def proxy_label(clf, llm_judge, k, testing_data):
    #llm_judge - any LLM with a system prompt tuned for verifying if a sample belongs to a class. Expected output is a bool : True or False. True verifies the original classification, False refutes it
    predicted_classes = clf.predict(testing_data)

    # Select k most informative samples using uncertainty sampling
    informative_samples = select_informative_samples(clf, testing_data, k)

    # List to store correct samples
    voted_data = []

    # Evaluate informative samples with the LLM judge
    for sample in informative_samples:
        sample_index = testing_data.tolist().index(sample.tolist()) # changed from testing_data.index(sample) because of numpy array type issue
        predicted_class = predicted_classes[sample_index]

        # Check if LLM judge agrees with the prediction
        if llm_judge(sample, predicted_class):
            # If correct, add the sample to voted data
            voted_data.append(sample)

    # Return the list of correct samples with proxy labels
    return voted_data
登录后复制

By feeding the valid samples (voted_data) to our classifier under controlled parameters, we achieve the ‘recursive’ part of our algorithm:

R.E.D。:与专家代表团的缩放文本分类

By doing this, we were able to achieve close-to-human-expert validation numbers on controlled multi-class datasets. Experimentally, R.E.D. scales up to1,000 classes while maintaining a competent degree of accuracyalmost on par with human experts (90%+ agreement).

I believe this is a significant achievement in applied ML, and has real-world uses for production-grade expectations of cost, speed, scale, and adaptability. The technical report, publishing later this year, highlights relevant code samples as well as experimental setups used to achieve given results.

All images, unless otherwise noted, are by the author

Interested in more details? Reach out to me over Medium or email for a chat!

以上是R.E.D。:与专家代表团的缩放文本分类的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

最佳AI艺术生成器(免费付款)创意项目 最佳AI艺术生成器(免费付款)创意项目 Apr 02, 2025 pm 06:10 PM

本文回顾了AI最高的艺术生成器,讨论了他们的功能,对创意项目的适用性和价值。它重点介绍了Midjourney是专业人士的最佳价值,并建议使用Dall-E 2进行高质量的可定制艺术。

开始使用Meta Llama 3.2 -Analytics Vidhya 开始使用Meta Llama 3.2 -Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

最佳AI聊天机器人比较(Chatgpt,Gemini,Claude&更多) 最佳AI聊天机器人比较(Chatgpt,Gemini,Claude&更多) Apr 02, 2025 pm 06:09 PM

本文比较了诸如Chatgpt,Gemini和Claude之类的顶级AI聊天机器人,重点介绍了其独特功能,自定义选项以及自然语言处理和可靠性的性能。

Chatgpt 4 o可用吗? Chatgpt 4 o可用吗? Mar 28, 2025 pm 05:29 PM

Chatgpt 4当前可用并广泛使用,与诸如ChatGpt 3.5(例如ChatGpt 3.5)相比,在理解上下文和产生连贯的响应方面取得了重大改进。未来的发展可能包括更多个性化的间

顶级AI写作助理来增强您的内容创建 顶级AI写作助理来增强您的内容创建 Apr 02, 2025 pm 06:11 PM

文章讨论了Grammarly,Jasper,Copy.ai,Writesonic和Rytr等AI最高的写作助手,重点介绍了其独特的内容创建功能。它认为Jasper在SEO优化方面表现出色,而AI工具有助于保持音调的组成

构建AI代理的前7个代理抹布系统 构建AI代理的前7个代理抹布系统 Mar 31, 2025 pm 04:25 PM

2024年见证了从简单地使用LLM进行内容生成的转变,转变为了解其内部工作。 这种探索导致了AI代理的发现 - 自主系统处理任务和最少人工干预的决策。 Buildin

选择最佳的AI语音生成器:评论的顶级选项 选择最佳的AI语音生成器:评论的顶级选项 Apr 02, 2025 pm 06:12 PM

本文评论了Google Cloud,Amazon Polly,Microsoft Azure,IBM Watson和Discript等高级AI语音生成器,重点介绍其功能,语音质量和满足不同需求的适用性。

向员工出售AI策略:Shopify首席执行官的宣言 向员工出售AI策略:Shopify首席执行官的宣言 Apr 10, 2025 am 11:19 AM

Shopify首席执行官TobiLütke最近的备忘录大胆地宣布AI对每位员工的基本期望是公司内部的重大文化转变。 这不是短暂的趋势。这是整合到P中的新操作范式

See all articles