使用 Python 和 FaceNet 进行人脸识别
本指南演示了使用facenet-pytorch的人脸相似度检测工具。该工具利用 FaceNet 模型的高质量人脸嵌入,将目标图像与多个候选图像进行比较,以确定最接近的匹配。 让我们来探索一下实现方式。
基本工具和库
- PyTorch:深度学习操作的基础。
- FaceNet-PyTorch: 提供用于人脸检测和嵌入生成的预训练模型。
- Pillow (PIL): 处理图像处理任务。
- Matplotlib:用于结果可视化。
采用了两个核心模型:
- MTCNN: 检测图像中的人脸。
- InceptionResnetV1:提取面部嵌入。
初始化
import torch from facenet_pytorch import MTCNN, InceptionResnetV1 from PIL import Image import requests from io import BytesIO import matplotlib.pyplot as plt # Initialize face detection (MTCNN) and embedding extraction (InceptionResnetV1) modules. mtcnn = MTCNN(image_size=160, keep_all=True) resnet = InceptionResnetV1(pretrained='vggface2').eval()
函数定义
1。图像加载和嵌入提取:
此函数从 URL 检索图像、检测人脸并计算嵌入。
def get_embedding_and_face(image_path): """Loads an image, detects faces, and returns the embedding and detected face.""" try: response = requests.get(image_path) response.raise_for_status() content_type = response.headers.get('Content-Type') if 'image' not in content_type: raise ValueError(f"Invalid image URL: {content_type}") image = Image.open(BytesIO(response.content)).convert("RGB") except Exception as e: print(f"Image loading error from {image_path}: {e}") return None, None faces, probs = mtcnn(image, return_prob=True) if faces is None or len(faces) == 0: return None, None embedding = resnet(faces[0].unsqueeze(0)) return embedding, faces[0]
2。张量到图像的转换:
准备用于显示的张量。
def tensor_to_image(tensor): """Converts a normalized tensor to a displayable image array.""" image = tensor.permute(1, 2, 0).detach().numpy() image = (image - image.min()) / (image.max() - image.min()) image = (image * 255).astype('uint8') return image
3。最相似的人脸识别:
将目标图像的嵌入与候选图像的嵌入进行比较。
def find_most_similar(target_image_path, candidate_image_paths): """Identifies the most similar image to the target from a list of candidates.""" target_emb, target_face = get_embedding_and_face(target_image_path) if target_emb is None: raise ValueError("No face detected in the target image.") highest_similarity = float('-inf') most_similar_face = None most_similar_image_path = None candidate_faces = [] similarities = [] for candidate_image_path in candidate_image_paths: candidate_emb, candidate_face = get_embedding_and_face(candidate_image_path) if candidate_emb is None: similarities.append(None) candidate_faces.append(None) continue similarity = torch.nn.functional.cosine_similarity(target_emb, candidate_emb).item() similarities.append(similarity) candidate_faces.append(candidate_face) if similarity > highest_similarity: highest_similarity = similarity most_similar_face = candidate_face most_similar_image_path = candidate_image_path # Visualization plt.figure(figsize=(12, 8)) # Display target image plt.subplot(2, len(candidate_image_paths) + 1, 1) plt.imshow(tensor_to_image(target_face)) plt.title("Target Image") plt.axis("off") # Display most similar image if most_similar_face is not None: plt.subplot(2, len(candidate_image_paths) + 1, 2) plt.imshow(tensor_to_image(most_similar_face)) plt.title("Most Similar") plt.axis("off") # Display all candidates with similarity scores for idx, (candidate_face, similarity) in enumerate(zip(candidate_faces, similarities)): plt.subplot(2, len(candidate_image_paths) + 1, idx + len(candidate_image_paths) + 2) if candidate_face is not None: plt.imshow(tensor_to_image(candidate_face)) plt.title(f"Score: {similarity * 100:.2f}%") else: plt.title("No Face Detected") plt.axis("off") plt.tight_layout() plt.show() if most_similar_image_path is None: raise ValueError("No faces detected in candidate images.") return most_similar_image_path, highest_similarity
用法
用于比较的图片网址:
image_url_target = 'https://d1mnxluw9mpf9w.cloudfront.net/media/7588/4x3/1200.jpg' candidate_image_urls = [ 'https://beyondthesinglestory.wordpress.com/wp-content/uploads/2021/04/elon_musk_royal_society_crop1.jpg', 'https://cdn.britannica.com/56/199056-050-CCC44482/Jeff-Bezos-2017.jpg', 'https://cdn.britannica.com/45/188745-050-7B822E21/Richard-Branson-2003.jpg' ] most_similar_image, similarity_score = find_most_similar(image_url_target, candidate_image_urls) print(f"Most similar image: {most_similar_image}") print(f"Similarity score: {similarity_score * 100:.2f}%")
结果
结论
这个示例展示了facenet-pytorch的面部识别功能。 人脸检测和嵌入生成的结合可以为各种应用程序创建工具,例如身份验证或内容过滤。
以上是使用 Python 和 FaceNet 进行人脸识别的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。
