PyTorch 中的 CocoCaptions (1)
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了CocoDetection()使用带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014、带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json的test2017, image_info_test2015.json 和 image_info_test-dev2015.json。
- 我的帖子解释了CocoDetection()使用train2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了CocoDetection()使用train2017与stuff_train2017.json,val2017与stuff_val2017.json,stuff_train2017_pixelmaps与stuff_train2017.json,stuff_val2017_pixelmaps与stuff_val2017.json,panoptic_train2017与panoptic_train2017.json,panoptic_val2017与panoptic_val2017.json 和 unlabeled2017 以及 image_info_unlabeled2017.json。
- 我的帖子解释了 MS COCO。
CocoCaptions() 可以使用 MS COCO 数据集,如下所示。 *这适用于带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014,带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json、image_info_test2015.json和的test2017 image_info_test-dev2015.json:
*备忘录:
- 第一个参数是root(必需类型:str或pathlib.Path):
*备注:
- 这是图像的路径。
- 绝对或相对路径都是可能的。
- 第二个参数是 annFile(必需类型:str 或 pathlib.Path):
*备注:
- 这是注释的路径。
- 绝对或相对路径都是可能的。
- 第三个参数是transform(Optional-Default:None-Type:callable)。
- 第四个参数是 target_transform(Optional-Default:None-Type:callable)。
- 第五个参数是transforms(Optional-Default:None-Type:callable)。
from torchvision.datasets import CocoCaptions cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoCaptions( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/image_info_test2014.json" ) test2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test2015.json" ) testdev2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoCaptions # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data.coco # <pycocotools.coco.COCO at 0x759028ee1d00> cap_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, # ['three zeebras standing in a grassy field walking', # 'Three zebras are standing in an open field.', # 'Three zebra are walking through the grass of a field.', # 'Three zebras standing on a grassy dirt field.', # 'Three zebras grazing in green grass field area.']) cap_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # ['a young guy walking in a forrest holding an object in his hand', # 'A partially black and white photo of a man throwing ... the woods.', # 'A disc golfer releases a throw from a dirt tee ... wooded course.', # 'The person is in the clearing of a wooded area. ', # 'a person throwing a frisbee at many trees ']) cap_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # ['A person on a court with a tennis racket.', # 'A man that is holding a racquet standing in the grass.', # 'A tennis player hits the ball during a match.', # 'The tennis player is poised to serve a ball.', # 'Man in white playing tennis on a court.']) ins_train2014_data[26] # Error ins_train2014_data[179] # Error ins_train2014_data[194] # Error pk_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, []) pk_train2014_data[179] # Error pk_train2014_data[194] # Error cap_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # ['a close up of a child next to a cake with balloons', # 'A baby sitting in front of a cake wearing a tie.', # 'The young boy is dressed in a tie that matches his cake. ', # 'A child eating a birthday cake near some balloons.', # 'A baby eating a cake with a tie around ... the background.']) cap_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # ['Many small children are posing together in the ... white photo. ', # 'A vintage school picture of grade school aged children.', # 'A black and white photo of a group of kids.', # 'A group of children standing next to each other.', # 'A group of children standing and sitting beside each other. ']) cap_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man hitting a tennis ball with a racquet.', # 'champion tennis player swats at the ball hoping to win', # 'A man is hitting his tennis ball with a recket on the court.', # 'a tennis player on a court with a racket', # 'A professional tennis player hits a ball as fans watch.']) ins_val2014_data[26] # Error ins_val2014_data[179] # Error ins_val2014_data[194] # Error pk_val2014_data[26] # Error pk_val2014_data[179] # Error pk_val2014_data[194] # Error test2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x640>, []) test2014_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x360>, []) test2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x426>, []) test2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, []) testdev2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) x_crd = 0.02 for i, axis in zip(ims, axes.ravel()): if data[i][1]: im, anns = data[i] axis.imshow(X=im) y_crd = 0.0 for j, ann in enumerate(iterable=anns): text_list = ann.split() if len(text_list) > 9: text = " ".join(text_list[0:10]) + " ..." else: text = " ".join(text_list) plt.figtext(x=x_crd, y=y_crd, fontsize=10, s=f'{j} : {text}') y_crd -= 0.06 x_crd += 0.325 if i == 2 and file == "val2017": x_crd += 0.06 elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (26, 179, 194) show_images(data=cap_train2014_data, ims=ims, main_title="cap_train2014_data") show_images(data=cap_val2014_data, ims=ims, main_title="cap_val2014_data") show_images(data=test2014_data, ims=ims, main_title="test2014_data") show_images(data=test2015_data, ims=ims, main_title="test2015_data") show_images(data=testdev2015_data, ims=ims, main_title="testdev2015_data")
以上是PyTorch 中的 CocoCaptions (1)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
