首页 后端开发 Python教程 【Python】B站视频评论和弹幕处理分析脚本

【Python】B站视频评论和弹幕处理分析脚本

Jan 05, 2025 pm 07:54 PM

[Python] A Script for Processing and Analysing Bilibili Video Comments and Bullet Chats

免责声明:仅供个人学习和研究之用。严禁用于其他用途。

介绍

该脚本是为人文学科的学术目的而开发的:具体而言,用于网络平台话语分析的研究。它可以对B站弹幕和评论进行全面研究。重点是涉及亚文化和社会问题的大量内容(根据查阅的材料),需要深入调查、分析、补充和总结。

鉴于内容广泛,结果显示在链接中:

亚文化视角下的评论和弹幕研究:
​https://nbviewer.org/github/Excalibra/scripts/blob/main/d-ipynb/Subculture Perspective Review and Bullet Screen Research.ipynb

计划完成“亚文化”和“社会问题”部分的研究后再公开。不过,考虑到该领域研究人员和学生的需求,现在已经分享了。

特点与原理

脚本特点:

  1. 收集视频标题、作者、发布日期、观看次数、收藏、分享、累积弹幕、评论次数、视频描述、类别、视频链接和封面图片链接等数据。

  2. 提取 100 条弹幕聊天,包含情绪评分、词性分析、时间戳和用户 ID。

  3. 检索 20 条热门评论,以及点赞数、情绪分数、主题回复、会员 ID、姓名和评论时间戳。

增强功能:

  1. 弹幕聊天:用户名、生日、注册日期、关注者数量和关注数量(使用 cookie)。

  2. 评论:显示评论者的 IP 位置(通过网络界面)。

  3. 将数据输出到 Excel 文件,其中包含情感中位数、词频统计、词云和条形图。

工作原理:

通过API获取JSON信息,处理成Excel文件,利用SnowNLP、ThuNLP、Jieba等语言模型进行文本分词、停用词过滤、词性分析、词频统计等。 Matplotlib 用于生成图表。

快速入门

(Windows用户可以使用pip和python。Mac用户默认使用pip3和python3。)

脚本源代码:GitHub 存储库。

必备库:
安装所需的库:

pip3 install --no-cache-dir -r https://ghproxy.com/https://github.com/Excalibra/scripts/blob/main/d-txt/requirements.txt

然后运行脚本(在线):

python3 -c "$(curl -fsSL https://ghproxy.com/https://github.com/Excalibra/scripts/blob/main/d-python/get_bv_baseinfo.py)"

import json
import time
import requests
import os
from datetime import datetime
import re
from bs4 import BeautifulSoup
from openpyxl import Workbook
from openpyxl.styles import Alignment, Font
from snownlp import SnowNLP
import statistics
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import platform
import thulac
import matplotlib.font_manager as fm
from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.by import By


'''''''''

# Reference Links

## General

Regex: https://regex101.com/
Zhihu - Two ways to obtain Bilibili video bullet comments using Python: https://zhuanlan.zhihu.com/p/609154366
Juejin - Parsing Bilibili video bullet comments: https://juejin.cn/post/7137928570080329741
CSDN - Bilibili historical bullet comment crawler: https://blog.csdn.net/sinat_18665801/article/details/104519838
CSDN - How to write a Bilibili bullet comment crawler: https://blog.csdn.net/bigbigsman/article/details/78639053?utm_source=app
Bilibili - Bilibili bullet comment notes: https://www.bilibili.com/read/cv5187469/
Bilibili third-party API: https://www.bookstack.cn/read/BilibiliAPIDocs/README.md

## Reverse Lookup by UID

https://github.com/esterTion/BiliBili_crc2mid
https://github.com/cwuom/GetDanmuSender/blob/main/main.py
https://github.com/Aruelius/crc32-crack

## User Basic Information

https://api.bilibili.com/x/space/acc/info?mid=298220126
https://github.com/ria-klee/bilibili-uid
https://github.com/SocialSisterYi/bilibili-API-collect/blob/master/docs/user/space.md

## Comments

https://www.bilibili.com/read/cv10120255/
https://github.com/SocialSisterYi/bilibili-API-collect/blob/master/docs/comment/readme.md

## JSON

https://json-schema.apifox.cn
https://bbs.huaweicloud.com/blogs/279515
https://www.cnblogs.com/mashukui/p/16972826.html

## Cookie

https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Cookies

## Unpacking

https://www.cnblogs.com/will-wu/p/13251545.html
https://www.w3schools.com/python/python_tuples.asp

'''''''''''

class BilibiliAPI:
    @staticmethod
    # Parse video link basic information JSON and return it in JSON format
    def get_bv_json(video_url):
        video_id = re.findall(r'BV\w+', video_url)[0]
        api_url = f'https://api.bilibili.com/x/web-interface/view?bvid={video_id}'
        bv_json = requests.get(api_url).json()
        return bv_json

    @staticmethod
    # Parse video link bullet comments XML using the 'cid' field in JSON
    def get_danmu_xml(bv_json):
        cid = bv_json['data']["cid"]
        api_url = f'https://comment.bilibili.com/{cid}.xml'
        danmu_xml = api_url
        return danmu_xml

    @staticmethod
    # Parse video link comments JSON using the 'aid' field in JSON
    def get_comment_json(bv_json):
        aid = bv_json['data']["aid"]
        api_url = f'https://api.bilibili.com/x/v2/reply/main?next=1&type=1&oid={aid}'
        comment_json = requests.get(api_url).json()
        return comment_json

    @staticmethod
    # Enhanced parsing of video link comments JSON using the 'aid' field in JSON
    def get_comment_json_to_webui(bv_json):
        aid = bv_json['data']["aid"]
        api_url = f'https://api.bilibili.com/x/v2/reply/main?next=1&type=1&oid={aid}'

        # Determine the current operating system type
        if platform.system() == "Windows":
            # Windows platform
            driver = webdriver.Chrome()
        else:
            # Other platforms
            driver = webdriver.Chrome(ChromeDriverManager().install())

        # Provide login time
        print("Provide 45 seconds for Bilibili login")
        time.sleep(45)

        # Open the link
        driver.get(api_url)

        # Provide view effect time
        print("Provide 15 seconds to check the effects")
        time.sleep(15)

        # Find the <pre class="brush:php;toolbar:false"> element
        pre_element = driver.find_element(By.TAG_NAME, 'pre')

        # Get the text content of the element
        text_content = pre_element.text

        # Close WebDriver
        driver.quit()

        return text_content

    @staticmethod
    # Traverse user information and return basic parameters, preparing for XLSX write-in
    def get_user_card(mid, cookies):
            api_url = f'https://account.bilibili.com/api/member/getCardByMid?mid={mid}'
            try:
                response = requests.get(api_url, cookies=cookies)
                user_card_json = response.json()
            except json.JSONDecodeError:
                return {"error": "Failed to parse JSON. Ensure a good network environment. Too many API calls might trigger restrictions; try again later."}

            if 'message' in user_card_json:
                message = user_card_json['message']
                if 'request blocked' in message or 'frequent requests' in message:
                    return {"warning": "Ensure a good network environment. Too many API calls might trigger restrictions; try again later."}

            return user_card_json

class CRC32Checker:
    ''''''''''
    # CRC32 cracking
    # Source: https://github.com/Aruelius/crc32-crack
    # Author: Aruelius
    # Note: This section has been slightly adjusted and encapsulated as a class for easier use.
    '''''''''

    CRCPOLYNOMIAL = 0xEDB88320
    crctable = [0 for x in range(256)]

    def __init__(self):
        self.create_table()

    def create_table(self):
        # Create a CRC table for quick CRC value computation
        for i in range(256):
            crcreg = i
            for _ in range(8):
                if (crcreg & 1) != 0:
                    crcreg = self.CRCPOLYNOMIAL ^ (crcreg >> 1)
                else:
                    crcreg = crcreg >> 1
            self.crctable[i] = crcreg

    def crc32(self, string):
        # Compute the CRC32 value for the given string
        crcstart = 0xFFFFFFFF
        for i in range(len(str(string))):
            index = (crcstart ^ ord(str(string)[i])) & 255
            crcstart = (crcstart >> 8) ^ self.crctable[index]
        return crcstart

    def crc32_last_index(self, string):
        # Compute the last character CRC table index for a given string
        crcstart = 0xFFFFFFFF
        for i in range(len(str(string))):
            index = (crcstart ^ ord(str(string)[i])) & 255
            crcstart = (crcstart >> 8) ^ self.crctable[index]
        return index

    def get_crc_index(self, t):
        # Find the index in the CRC table corresponding to the highest byte value
        for i in range(256):
            if self.crctable[i] >> 24 == t:
                return i
        return -1

    def deep_check(self, i, index):
        # Deep check based on index and previous CRC32 values to verify the assumption
        string = ""
        tc = 0x00
        hashcode = self.crc32(i)
        tc = hashcode & 0xff ^ index[2]
        if not (tc <= 57 and tc >= 48):
            return [0]
        string += str(tc - 48)
        hashcode = self.crctable[index[2]] ^ (hashcode >> 8)
        tc = hashcode & 0xff ^ index[1]
        if not (tc <= 57 and tc >= 48):
            return [0]
        string += str(tc - 48)
        hashcode = self.crctable[index[1]] ^ (hashcode >> 8)
        tc = hashcode & 0xff ^ index[0]
        if not (tc <= 57 and tc >= 48):
            return [0]
        string += str(tc - 48)
        hashcode = self.crctable[index[0]] ^ (hashcode >> 8)
        return [1, string]

    def main(self, string):
        # Main function to compute and validate CRC32 for the given string
        index = [0 for x in range(4)]
        i = 0
        ht = int(f"0x{string}", 16) ^ 0xffffffff
        for i in range(3, -1, -1):
            index[3-i] = self.get_crc_index(ht >> (i*8))
            snum = self.crctable[index[3-i]]
            ht ^= snum >> ((3-i)*8)
        for i in range(100000000):
            lastindex = self.crc32_last_index(i)
            if lastindex == index[3]:
                deepCheckData = self.deep_check(i, index)
                if deepCheckData[0]:
                    break
        if i == 100000000:
            return -1
        return f"{i}{deepCheckData[1]}"
class Tools:
    @staticmethod
    # Get save path and format
    def get_save():
        return os.path.join(os.path.join(os.path.expanduser("~"), "Desktop"),
                            "Bilibili_Video_Analysis_{}.xlsx".format(datetime.now().strftime('%Y-%m-%d')))

    @staticmethod
    # Format timestamp
    def format_timestamp(timestamp):
        dt_object = datetime.fromtimestamp(timestamp)
        formatted_time = dt_object.strftime("%Y-%m-%d %H:%M:%S")
        return formatted_time

    @staticmethod
    # Calculate sentiment score
    def calculate_sentiment_score(text):
        s = SnowNLP(text)
        sentiment_score = s.sentiments
        return sentiment_score

    @staticmethod
    # Generate a word cloud
    def get_word_cloud(sheet_name: str, workbook: Workbook):
        sheet = workbook[sheet_name]

        # Read frequency data
        words = []
        frequencies = []
        for row in sheet.iter_rows(min_row=2, values_only=True):
            words.append(row[0])
            frequencies.append(row[1])

        system = platform.system()

        if system == 'Darwin':  # macOS
            font_path = '/System/Library/Fonts/STHeiti Light.ttc'
        elif system == 'Windows':
            font_path = 'C:/Windows/Fonts/simhei.ttf'
        else:  # Other OS
            font_path = 'simhei.ttf'

        wordcloud = WordCloud(background_color='white', max_words=100, font_path=font_path)
        word_frequency = dict(zip(words, frequencies))
        wordcloud.generate_from_frequencies(word_frequency)

        plt.imshow(wordcloud, interpolation='bilinear')
        plt.axis('off')
        plt.show()

    @staticmethod
    # Generate horizontal statistics chart
    def get_word_chart(sheet_name: str, workbook):
        sheet = workbook[sheet_name]

        words = []
        frequencies = []
        for row in sheet.iter_rows(min_row=2, values_only=True):
            words.append(row[0])
            frequencies.append(row[1])

        system = platform.system()

        if system == 'Darwin':  
            font_path = '/System/Library/Fonts/STHeiti Light.ttc'
        elif system == 'Windows':
            font_path = 'C:/Windows/Fonts/simhei.ttf'
        else:  
            font_path = 'simhei.ttf'

        custom_font = fm.FontProperties(fname=font_path)

        fig, ax = plt.subplots()
        ax.barh(words, frequencies)
        ax.set_xlabel("Frequency", fontproperties=custom_font)
        ax.set_ylabel("Words", fontproperties=custom_font)

        plt.yticks(fontproperties=custom_font)

        plt.show()

    @staticmethod
    def get_user_info_by_card(user_card_json):
        info = {
            'name': "N/A", 'birthday': "N/A", 'regtime': "N/A",
            'fans': "N/A", 'friend': "N/A"
        }

        try:
            info['name'] = user_card_json['card']['name']
            info['birthday'] = user_card_json['card']['birthday']
            info['regtime'] = Tools.format_timestamp(int(user_card_json['card']['regtime']))
            info['fans'] = user_card_json['card']['fans']
            info['friend'] = user_card_json['card']['friend']
        except KeyError:
            pass

        return tuple(info.values())

class BilibiliExcel:
    @staticmethod
    # Write video basic information
    def write_base_info(workbook, bv_json):
        sheet = workbook.create_sheet(title="Video Info")
        headers = ["Video Title", "Author", "Publish Time", "Views", "Favorites", "Shares", "Total Bullet Comments",
                   "Comments Count", "Video Description", "Category", "Video Link", "Thumbnail Link"]
        sheet.append(headers)

        data = [bv_json["data"]["title"],
                bv_json["data"]["owner"]["name"],
                Tools.format_timestamp(bv_json["data"]["pubdate"]),
                bv_json["data"]["stat"]["view"],
                bv_json["data"]["stat"]["favorite"],
                bv_json["data"]["stat"]["share"],
                bv_json["data"]["stat"]["danmaku"],
                bv_json["data"]["stat"]["reply"],
                bv_json["data"]["desc"],
                bv_json["data"]["tname"],
                video_url,
                bv_json["data"]["pic"]]

        sheet.append(data)

    @staticmethod
    def save_workbook(workbook):
        workbook.save(Tools.get_save())

class PrintInfo:
    # Print basic information
    @staticmethod
    def base_message():
        if 'Windows' == platform.system():
            os.system('cls')
        else:
            os.system('clear')

        text = '''
        ************************************

        Bilibili Video Analysis v2023.6.26
        Author: Github.com/hoochanlon
        Project URL: https://github.com/hoochanlon/scripts

        Features:
        1. Analyze and visualize Bilibili video data.

        Disclaimer: For research and learning purposes only.

        ************************************
        '''
        print(text.center(50, ' '))

if __name__ == '__main__':
    PrintInfo.base_message()

    while True:
        video_url = input("Paste the Bilibili video link: ")
        if re.match(r'.*BV\w+', video_url):
            break
        else:
            print("Invalid link format. Please re-enter.")

    bv_json = BilibiliAPI.get_bv_json(video_url)
    workbook = Workbook()
    workbook.remove(workbook.active)
    BilibiliExcel.write_base_info(workbook, bv_json)
    BilibiliExcel.save_workbook(workbook)
登录后复制

使用注意事项:

  • 为了简化cookie输入,可以使用key=value;格式,例如“a=a;”,以跳过不必要的步骤。
  • 查看 IP 位置需要通过网络驱动程序登录您的 Bilibili 帐户。

以上是【Python】B站视频评论和弹幕处理分析脚本的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1670
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1274
29
C# 教程
1256
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Web开发的Python:关键应用程序 Web开发的Python:关键应用程序 Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

See all articles