首页 后端开发 Golang 计算 Go 中发送给 LLM 的 Token 数量(第 2 部分)

计算 Go 中发送给 LLM 的 Token 数量(第 2 部分)

Jan 03, 2025 pm 10:03 PM

Counting the number of Tokens sent to a LLM in Go (part 2)

介绍

这是编写 Go 应用程序的第二部分,该应用程序用于根据所选文本确定用户发送给 LLM 的令牌数量。

在上一篇文章中,我提到我只想构建一些仅用 Golang 编写的东西,在我查看的 Github 存储库中,这个似乎非常好:go-hggingface。该代码似乎很新,但它“有点”适合我。

执行

首先,代码访问 Hugginface 以获取所有与 LLM 相关的“标记器”列表,因此用户应该拥有 HF 标记。因此,我将令牌放入 .env 文件中,如图所示。

HF_TOKEN="your-huggingface-token"
登录后复制

然后使用下页中提供的示例 (https://github.com/gomlx/go-huggingface?tab=readme-ov-file),我围绕它构建了自己的代码。

package main

import (
 "bytes"
 "fmt"
 "log"
 "os"
 "os/exec"
 "runtime"

 "github.com/gomlx/go-huggingface/hub"
 "github.com/gomlx/go-huggingface/tokenizers"

 "github.com/joho/godotenv"
 "github.com/sqweek/dialog"

 "fyne.io/fyne/v2"
 "fyne.io/fyne/v2/app"
 "fyne.io/fyne/v2/container"
 "fyne.io/fyne/v2/widget"
 //"github.com/inancgumus/scree"
)

var (
 // Model IDs we use for testing.
 hfModelIDs = []string{
  "ibm-granite/granite-3.1-8b-instruct",
  "meta-llama/Llama-3.3-70B-Instruct",
  "mistralai/Mistral-7B-Instruct-v0.3",
  "google/gemma-2-2b-it",
  "sentence-transformers/all-MiniLM-L6-v2",
  "protectai/deberta-v3-base-zeroshot-v1-onnx",
  "KnightsAnalytics/distilbert-base-uncased-finetuned-sst-2-english",
  "KnightsAnalytics/distilbert-NER",
  "SamLowe/roberta-base-go_emotions-onnx",
 }
)

func runCmd(name string, arg ...string) {
 cmd := exec.Command(name, arg...)
 cmd.Stdout = os.Stdout
 cmd.Run()
}

func ClearTerminal() {
 switch runtime.GOOS {
 case "darwin":
  runCmd("clear")
 case "linux":
  runCmd("clear")
 case "windows":
  runCmd("cmd", "/c", "cls")
 default:
  runCmd("clear")
 }
}

func FileSelectionDialog() string {
 // Open a file dialog box and let the user select a text file
 filePath, err := dialog.File().Filter("Text Files", "txt").Load()
 if err != nil {
  if err.Error() == "Cancelled" {
   fmt.Println("File selection was cancelled.")
  }
  log.Fatalf("Error selecting file: %v", err)
 }

 // Output the selected file name
 fmt.Printf("Selected file: %s\n", filePath)
 return filePath
}

func main() {

 var filePath string

 // read the '.env' file
 err := godotenv.Load()
 if err != nil {
  log.Fatal("Error loading .env file")
 }
 // get the value of the 'HF_TOKEN' environment variable
 hfAuthToken := os.Getenv("HF_TOKEN")
 if hfAuthToken == "" {
  log.Fatal("HF_TOKEN environment variable is not set")
 }

 // to display a list of LLMs to determine the # of tokens later on regarding the given text
 var llm string = ""
 var modelID string = ""
 myApp := app.New()
 myWindow := myApp.NewWindow("Select a LLM in the list")
 items := hfModelIDs
 // Label to display the selected item
 selectedItem := widget.NewLabel("Selected LLM: None")
 // Create a list widget
 list := widget.NewList(
  func() int {
   // Return the number of items in the list
   return len(items)
  },
  func() fyne.CanvasObject {
   // Template for each list item
   return widget.NewLabel("Template")
  },
  func(id widget.ListItemID, obj fyne.CanvasObject) {
   // Update the template with the actual data
   obj.(*widget.Label).SetText(items[id])
  },
 )
 // Handle list item selection
 list.OnSelected = func(id widget.ListItemID) {
  selectedItem.SetText("Selected LLM:" + items[id])
  llm = items[id]
 }

 // Layout with the list and selected item label
 content := container.NewVBox(
  list,
  selectedItem,
 )

 // Set the content of the window
 myWindow.SetContent(content)
 myWindow.Resize(fyne.NewSize(300, 400))
 myWindow.ShowAndRun()
 ClearTerminal()
 fmt.Printf("Selected LLM: %s\n", llm)
 //////

 //List files for the selected model
 for _, modelID := range hfModelIDs {
  if modelID == llm {
   fmt.Printf("\n%s:\n", modelID)
   repo := hub.New(modelID).WithAuth(hfAuthToken)
   for fileName, err := range repo.IterFileNames() {
    if err != nil {
     panic(err)
    }
    fmt.Printf("fileName\t%s\n", fileName)
    fmt.Printf("repo\t%s\n", repo)
    fmt.Printf("modelID\t%s\n", modelID)
   }
  }
 }

 //List tokenizer classes for the selected model
 for _, modelID := range hfModelIDs {
  if modelID == llm {
   fmt.Printf("\n%s:\n", modelID)
   repo := hub.New(modelID).WithAuth(hfAuthToken)
   fmt.Printf("\trepo=%s\n", repo)
   config, err := tokenizers.GetConfig(repo)
   if err != nil {
    panic(err)
   }
   fmt.Printf("\ttokenizer_class=%s\n", config.TokenizerClass)
  }
 }

 // Models URL -> "https://huggingface.co/api/models"
 repo := hub.New(modelID).WithAuth(hfAuthToken)
 tokenizer, err := tokenizers.New(repo)
 if err != nil {
  panic(err)
 }

 // call file selection dialogbox
 filePath = FileSelectionDialog()

 // Open the file
 filerc, err := os.Open(filePath)
 if err != nil {
  fmt.Printf("Error opening file: %v\n", err)
  return
 }
 defer filerc.Close()

 // Put the text file content into a buffer and convert it to a string.
 buf := new(bytes.Buffer)
 buf.ReadFrom(filerc)
 sentence := buf.String()

 tokens := tokenizer.Encode(sentence)
 fmt.Println("Sentence:\n", sentence)

 fmt.Printf("Tokens:  \t%v\n", tokens)
}
登录后复制

在“hfModelIDs”的“var”部分中,我添加了一些新的引用,例如 IBM 的 Granite、Meta 的 LLama 以及 Mistral 模型。

Huggingface 令牌也直接在 Go 代码中获取和读取。

我添加了一个对话框来显示法学硕士列表(我最终会更改),一个对话框来添加文件中的文本(我喜欢这种东西?)以及一些要清除和删除的代码行清洁屏幕?!

输入文字如下;

The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages.
We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations.
We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
登录后复制

测试
执行后的代码会显示一个对话框 bx,您可以在其中选择所需的 LLM。

Counting the number of Tokens sent to a LLM in Go (part 2)

如果一切顺利,下一步是在本地下载“tokenizer”文件(请参阅 Github 存储库的说明),然后会显示一个对话框,选择包含要评估的内容的文本文件令牌数量。

到目前为止,我已请求访问 Meta LLama 和 Google“google/gemma-2–2b-it”模型,并正在等待访问权限被授予。

google/gemma-2-2b-it:
        repo=google/gemma-2-2b-it
panic: request for metadata from "https://huggingface.co/google/gemma-2-2b-it/resolve/299a8560bedf22ed1c72a8a11e7dce4a7f9f51f8/tokenizer_config.json" failed with the following message: "403 Forbidden"
登录后复制

Counting the number of Tokens sent to a LLM in Go (part 2)

结论

我认为实现我想要的目标的正确途径是,一个能够确定代币数量的 Golang 程序是用户发送到 LLM 的查询。

该项目的唯一目的是了解针对各种 LLM 的查询中确定令牌数量背后的内部系统,并发现它们是如何计算的。

感谢您的阅读并欢迎评论。

最终结论之前,敬请期待……?

以上是计算 Go 中发送给 LLM 的 Token 数量(第 2 部分)的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1653
14
CakePHP 教程
1413
52
Laravel 教程
1304
25
PHP教程
1251
29
C# 教程
1224
24
Golang的目的:建立高效且可扩展的系统 Golang的目的:建立高效且可扩展的系统 Apr 09, 2025 pm 05:17 PM

Go语言在构建高效且可扩展的系统中表现出色,其优势包括:1.高性能:编译成机器码,运行速度快;2.并发编程:通过goroutines和channels简化多任务处理;3.简洁性:语法简洁,降低学习和维护成本;4.跨平台:支持跨平台编译,方便部署。

Golang和C:并发与原始速度 Golang和C:并发与原始速度 Apr 21, 2025 am 12:16 AM

Golang在并发性上优于C ,而C 在原始速度上优于Golang。1)Golang通过goroutine和channel实现高效并发,适合处理大量并发任务。2)C 通过编译器优化和标准库,提供接近硬件的高性能,适合需要极致优化的应用。

Golang vs. Python:主要差异和相似之处 Golang vs. Python:主要差异和相似之处 Apr 17, 2025 am 12:15 AM

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。 Golang以其并发模型和高效性能着称,Python则以简洁语法和丰富库生态系统着称。

Golang vs. Python:性能和可伸缩性 Golang vs. Python:性能和可伸缩性 Apr 19, 2025 am 12:18 AM

Golang在性能和可扩展性方面优于Python。1)Golang的编译型特性和高效并发模型使其在高并发场景下表现出色。2)Python作为解释型语言,执行速度较慢,但通过工具如Cython可优化性能。

表演竞赛:Golang vs.C 表演竞赛:Golang vs.C Apr 16, 2025 am 12:07 AM

Golang和C 在性能竞赛中的表现各有优势:1)Golang适合高并发和快速开发,2)C 提供更高性能和细粒度控制。选择应基于项目需求和团队技术栈。

Golang的影响:速度,效率和简单性 Golang的影响:速度,效率和简单性 Apr 14, 2025 am 12:11 AM

GoimpactsdevelopmentPositationalityThroughSpeed,效率和模拟性。1)速度:gocompilesquicklyandrunseff,ifealforlargeprojects.2)效率:效率:ITScomprehenSevestAndArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdEcceSteral Depentencies,增强开发的简单性:3)SimpleflovelmentIcties:3)简单性。

C和Golang:表演至关重要时 C和Golang:表演至关重要时 Apr 13, 2025 am 12:11 AM

C 更适合需要直接控制硬件资源和高性能优化的场景,而Golang更适合需要快速开发和高并发处理的场景。1.C 的优势在于其接近硬件的特性和高度的优化能力,适合游戏开发等高性能需求。2.Golang的优势在于其简洁的语法和天然的并发支持,适合高并发服务开发。

Golang和C:性能的权衡 Golang和C:性能的权衡 Apr 17, 2025 am 12:18 AM

Golang和C 在性能上的差异主要体现在内存管理、编译优化和运行时效率等方面。1)Golang的垃圾回收机制方便但可能影响性能,2)C 的手动内存管理和编译器优化在递归计算中表现更为高效。

See all articles