首页 后端开发 Python教程 使用 ML 预测笔记本电脑价格

使用 ML 预测笔记本电脑价格

Jan 03, 2025 am 10:13 AM

在上一篇文章中,我创建了一个脚本来生成带有笔记本电脑数据的 CSV,在 PCComponentes 中进行网页抓取。

这个想法是在尝试创建一个机器学习模型时产生的,该模型根据您提供的组件来预测设备的价格。然而,在研究时我发现了一个可以用来训练模型的公共DataFrame,但它有一个问题:价格可以追溯到2015年,这使得它没什么用处。

出于这个原因,我决定直接从 PCComponentes 网站构建一个 DataFrame,这将使我能够获得更新且可靠的数据。此外,这个过程将来可能会实现自动化(至少在 PCComponentes 改变其网站结构之前)。

让我们开始吧!


DataFrame数据处理

在训练模型之前,需要对数据进行组织和清理,以使其更易于阅读和处理。为此,我们将使用广泛用于数据分析和处理的 Numpy、Pandas 和 Matplotlib 库。

第一件事是导入这些库并打开生成的 CSV:

import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  

登录后复制
登录后复制

然后,我们删除具有空值或 null 值的行:

df = df.dropna()  
登录后复制
登录后复制

数据分析与过滤

让我们首先分析可用的不同类型的 CPU。要查看它们,我们将使用 Seaborn 库:

import seaborn as sns  
sns.countplot(data=df, x='CPU')
登录后复制
登录后复制

Predicción de Precios de Portátiles con ML

Predicción de Precios de Portátiles con ML

这里我们看到有 207 种不同类型的 CPU。使用所有这些值训练模型可能会出现问题,因为大量数据将不相关并产生影响性能的噪声。

我们不会删除整个列,而是过滤最相关的值:

def cpu_type_define(text):
    text = text.split(' ')
    if text[0] == 'intel':
        if 'i' in text[-1]:
            if text[-1].split('-')[0] == 'i3':
                return 'low gamma intel processor'

            return text[0]+' '+text[1]+' '+text[-1].split('-')[0] 

        return 'low gamma intel processor'
    elif text[0] == 'amd':
        if text[1] == 'ryzen':
            if text[2] == '3':
                return 'low gamma amd processor'

            return text[0]+' '+text[1]+' '+text[2]

        return 'low gamma amd processor'
    elif 'm' in text[0]:
        return 'Mac Processor'
    else:
        return 'Other Processor'

data['Cpu'] = data['Cpu'].apply(cpu_type_define)
sns.histplot(data=data,x='Cpu')
data['Cpu'].value_counts()
登录后复制

结果:

Predicción de Precios de Portátiles con ML


GPU过滤

我们使用显卡 (GPU) 执行类似的过程,减少类别数量以避免数据中出现噪声:

def gpu_type_define(text):    

    if 'rtx' in text:

        num = int(''.join([char for char in text if char.isdigit()]))

        if num == 4080 or num == 4090 or num == 3080:
            return 'Nvidia High gamma'
        elif num == 4070 or num == 3070 or num == 4060 or num == 2080:
            return 'Nivida medium gamma'
        elif num == 3050 or num == 3060 or num == 4050 or num == 2070:
            return 'Nvidia low gamma'
        else:
            return 'Other nvidia grafic card'

    elif 'radeon' in text:

        if 'rx' in text:
            return 'Amd High gamma'
        else:
            return 'Amd low Gamma'

    elif 'gpu' in text:
        return 'Apple integrated graphics'

    return text



data['Gpu'] = data['Gpu'].apply(gpu_type_define)
sns.histplot(data=data,x='Gpu')
data['Gpu'].value_counts()  
登录后复制

结果:

Predicción de Precios de Portátiles con ML


存储和RAM处理

为了简化存储数据,我们将所有硬盘的总空间合并为一个值:

def fitler_ssd(text):
    two_discs = text.split('+')


    if len(two_discs) == 2:
        return int(''.join([char for char in two_discs[0] if char.isdigit()])) + int(''.join([char for char in two_discs[1] if char.isdigit()]))        
    else:
        return int(''.join([char for char in text if char.isdigit()]))

data['SSD'] = data['SSD'].str.replace('tb','000')
data['SSD'] = data['SSD'].str.replace('gb','')
data['SSD'] = data['SSD'].str.replace('emmc','')
data['SSD'] = data['SSD'].str.replace('ssd','')
登录后复制

最后,我们过滤 RAM 值以仅保留数字:

import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  

登录后复制
登录后复制

非数字数据编码

在训练模型之前,需要将非数字列转换为算法可以解释的数据。为此,我们使用 sklearn 库中的 ColumnTransformer 和 OneHotEncoder:

df = df.dropna()  
登录后复制
登录后复制

模型训练

我测试了几种机器学习算法,根据确定系数(R2 分数)确定哪一种算法最有效。结果如下:

Modelo R2 Score
Logistic Regression -4086280.26
Random Forest 0.8025
ExtraTreeRegressor 0.7531
GradientBoostingRegressor 0.8025
XGBRegressor 0.7556

使用随机森林和 GradientBoostingRegressor 获得了最佳结果,两者的 R2 都接近 1。

为了进一步改进,我使用投票回归器组合了这些算法,实现了 0.8085 的 R2 分数:

import seaborn as sns  
sns.countplot(data=df, x='CPU')
登录后复制
登录后复制

结论

使用投票回归器训练的模型是最有效的。现在您已准备好将其集成到网络应用程序中,我将在下一篇文章中详细解释。

项目链接

以上是使用 ML 预测笔记本电脑价格的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1655
14
CakePHP 教程
1414
52
Laravel 教程
1307
25
PHP教程
1254
29
C# 教程
1228
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles