在 PyTorch 中排列
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 linspace()。
- 我的帖子解释了 logspace()。
arange() 可以在 start 和 end-1 之间创建零或整数或浮点数的一维张量(start
*备忘录:
- arange() 可以与 torch 一起使用,但不能与张量一起使用。
- torch 的第一个参数是 start(可选-默认:0-类型:int、float、complex 或 bool):
*备忘录
- 它必须小于或等于end。
- int、float、complex 或 bool 的 0D 张量也适用。
- torch 的第二个参数是 end(必需类型:int、float、complex 或 bool):
*备注:
- 它必须大于或等于start。
- int、float、complex 或 bool 的 0D 张量也适用。
- torch 的第三个参数是步骤(可选-默认:1-类型:int、float、complex 或 bool):
*备注:
- 它必须大于0。
- int、float、complex 或 bool 的 0D 张量也适用。
- torch 有 dtype 参数(可选-默认:无类型:dtype):
*备注:
- 如果为None,则从start、end或step推断,然后对于浮点数,使用get_default_dtype()。 *我的帖子解释了 get_default_dtype() 和 set_default_dtype()。
- 必须使用 dtype=。
- 我的帖子解释了 dtype 参数。
- torch 有设备参数(可选-默认:无-类型:str、int 或 device()):
*备注:
- 如果为 None,则使用 get_default_device()。 *我的帖子解释了 get_default_device() 和 set_default_device()。
- 必须使用 device=。
- 我的帖子解释了设备参数。
- torch 有 require_grad 参数(可选-默认:False-Type:bool):
*备注:
- require_grad=必须使用。
- 我的帖子解释了 require_grad 参数。
- torch 存在 out 参数(可选-默认:无-类型:张量):
*备注:
- 必须使用 out=。
- 我的帖子解释了论点。
- range() 与 arange() 类似,但 range() 已被弃用。
import torch torch.arange(end=5) # tensor([0, 1, 2, 3, 4]) torch.arange(start=5, end=15) # tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) torch.arange(start=5, end=15, step=3) # tensor([5, 8, 11, 14]) torch.arange(start=-5, end=5) # tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) torch.arange(start=-5, end=5, step=3) torch.arange(start=torch.tensor(-5), end=torch.tensor(5), step=torch.tensor(3)) # tensor([-5, -2, 1, 4]) torch.arange(start=-5., end=5., step=3.) torch.arange(start=torch.tensor(-5.), end=torch.tensor(5.), step=torch.tensor(3.)) # tensor([-5., -2., 1., 4.]) torch.arange(start=-5.+0.j, end=5.+0.j, step=3.+0.j) torch.arange(start=torch.tensor(-5.+0.j), end=torch.tensor(5.+0.j), step=torch.tensor(3.+0.j)) # tensor([-5., -2., 1., 4.]) torch.arange(start=False, end=True, step=True) torch.arange(start=torch.tensor(False), end=torch.tensor(True), step=torch.tensor(True)) # tensor([0])
以上是在 PyTorch 中排列的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。
