Pandas 如何高效处理'大数据”工作流程?
使用 Pandas 的“大数据”工作流程
处理太大而无法放入内存的数据集时,高效的工作流程至关重要。为此,您可以利用 HDFStore 将数据集保存在磁盘上并仅检索必要的部分。
加载平面文件
迭代地将大型平面文件导入永久磁盘 -基于数据库结构。每个文件应包含具有相同列数的消费者数据记录。
查询数据库
要在 Pandas 中使用数据子集,请执行查询来检索特定的数据基于所需列的数据。这些选定的列应符合内存限制。
更新数据库
在 Pandas 中操作数据后,将新列追加到数据库结构中。这些新列通常是通过对所选列执行操作来创建的。
示例工作流程
- 导入平面文件并将其存储在磁盘上数据库。
- 将此数据的子集读取到 Pandas 中进行分析。
- 创建通过对子集执行操作来创建新列。
- 将新列追加回磁盘数据库。
- 重复步骤 2-4 以获取其他子集和操作。
其他注意事项
- 数据库结构应允许高效的按行操作,因为查询将基于行条件。
- 为了最大限度地减少内存使用,请将不同的字段组存储在数据库中的单独表或组中。
- 为特定列定义“data_columns”,以允许基于这些列快速选择行。
通过遵循这些最佳实践,您可以创建一个高效的工作流程来处理大型数据Pandas 中的数据集,使您即使在处理超出内存容量的大文件时也能高效地查询、操作和更新数据。
以上是Pandas 如何高效处理'大数据”工作流程?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
