首页 后端开发 Python教程 PyTorch 中的位置

PyTorch 中的位置

Dec 29, 2024 pm 12:08 PM

请我喝杯咖啡☕

*我的帖子解释了 Places365。

Places365() 可以使用 Places365 数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.Path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 split(可选-默认:“train-standard”-类型:str)。 *可以设置“train-standard”(1,803,460张图像)、“train-challenge”(8,026,628张图像)或“val”(36,500张图像)。不支持“test”(328,500 张图像),因此我在 GitHub 上请求了该功能。
  • 第三个参数很小(可选-默认:False-类型:bool)。
  • 第四个参数是 download(可选-默认:False-类型:bool): *备注:
    • 如果为 True,则从互联网下载数据集并解压(解压)到根目录。
    • 如果为 True 并且数据集已下载,则将其提取。
    • 如果为 True 并且数据集已下载并提取,则会发生错误,因为提取的文件夹存在。 *删除解压的文件夹不会出错。
    • 如果数据集已经下载并提取,则应该为 False,以免出现错误。
    • 从这里开始:
      • 对于split="train-standard"和small=False,您可以手动下载并提取数据集filelist_places365-standard.tar和train_large_places365standard.tar分别到data/和data/data_large_standard/
      • 对于split="train-standard"和small=True,您可以手动下载并提取数据集filelist_places365-standard.tar和train_256_places365standard.tar分别到data/和data/data_256_standard/
      • 对于split="train-challenge"和small=False,您可以手动下载并提取数据集filelist_places365-challenge.tar和train_large_places365challenge.tar分别到data/和data/data_large/
      • 对于split="train-challenge"和small=True,您可以手动下载并提取数据集filelist_places365-challenge.tar和train_256_places365challenge.tar分别到data/和data/data_256_challenge/。
      • 对于split="val" 和small=False,您可以手动下载数据集filelist_places365-standard.tar 和val_large.tar 并分别解压到data/ 和data/val_large/。
      • 对于split="val" 和small=True,您可以手动下载数据集filelist_places365-standard.tar 和val_large.tar 并分别解压到data/ 和data/val_256/
  • 第五个参数是transform(Optional-Default:None-Type:callable)。
  • 第 6 个参数是 target_transform(Optional-Default:None-Type:callable)。
  • 第 7 个参数是 loader(可选-默认:torchvision.datasets.folder.default_loader-Type:callable)。
  • 关于“火车标准”图像索引类的标签,airfield(0) 为 0~4999,airplane_cabin(1) 为 5000~9999,airport_terminal(2) 为 10000~14999, 壁龛(3)为15000~19999,小巷(4)为20000~24999,露天剧场(5)为25000~29999,amusement_arcade(6) 是30000~34999,游乐园(7)为35000~39999,公寓/户外(8)为40000~44999,水族馆(9)为45000~49999 ,等等
  • 关于“火车挑战”图像索引类的标签,airfield(0) 为 0~38566,airplane_cabin(1) 为 38567~47890,airport_terminal(2) 是47891~74901,壁龛(3)为74902~98482,小巷(4)为98483~137662,露天剧场(5)为137663~150034, 游乐园(6) 为 150035~161051,游乐园(7) 为 161052~201051,公寓楼/户外(8) 为 201052~227872, 水族馆(9)是227873~267872等
from torchvision.datasets import Places365
from torchvision.datasets.folder import default_loader

trainstd_large_data = Places365(
    root="data"
)

trainstd_large_data = Places365(
    root="data",
    split="train-standard",
    small=False,
    download=False,
    transform=None,
    target_transform=None,
    loader=default_loader
)

trainstd_small_data = Places365(
    root="data",
    split="train-standard",
    small=True
)

trainchal_large_data = Places365(
    root="data",
    split="train-challenge",
    small=False
)

trainchal_small_data = Places365(
    root="data",
    split="train-challenge",
    small=True
)

val_large_data = Places365(
    root="data",
    split="val",
    small=False
)

val_small_data = Places365(
    root="data",
    split="val",
    small=True
)

len(trainstd_large_data), len(trainstd_small_data)
# (1803460, 1803460)

len(trainchal_large_data), len(trainchal_small_data)
# (8026628, 8026628)

len(val_large_data), len(val_small_data)
# (36500, 36500)

trainstd_large_data
# Dataset Places365
#     Number of datapoints: 1803460
#     Root location: data
#     Split: train-standard
#     Small: False

trainstd_large_data.root
# 'data'

trainstd_large_data.split
# 'train-standard'

trainstd_large_data.small
# False

trainstd_large_data.download_devkit
trainstd_large_data.download_images
# <bound method Places365.download_devkit of Dataset Places365
#     Number of datapoints: 1803460
#     Root location: data
#     Split: train-standard
#     Small: False>

print(trainstd_large_data.transform)
# None

print(trainstd_large_data.target_transform)
# None

trainstd_large_data.loader
# <function torchvision.datasets.folder.default_loader(path: str) -> Any>

len(trainstd_large_data.classes), trainstd_large_data.classes
# (365,
#  ['/a/airfield', '/a/airplane_cabin', '/a/airport_terminal',
#   '/a/alcove', '/a/alley', '/a/amphitheater', '/a/amusement_arcade',
#   '/a/amusement_park', '/a/apartment_building/outdoor',
#   '/a/aquarium', '/a/aqueduct', '/a/arcade', '/a/arch',
#   '/a/archaelogical_excavation', ..., '/y/youth_hostel', '/z/zen_garden'])

trainstd_large_data[0]
# (<PIL.Image.Image image mode=RGB size=683x512>, 0)

trainstd_large_data[1]
# (<PIL.Image.Image image mode=RGB size=768x512>, 0)

trainstd_large_data[2]
# (<PIL.Image.Image image mode=RGB size=718x512>, 0)

trainstd_large_data[5000]
# (<PIL.Image.Image image mode=RGB size=512x683 at 0x1E7834F4770>, 1)

trainstd_large_data[10000]
# (<PIL.Image.Image image mode=RGB size=683x512 at 0x1E7834A8110>, 2)

trainstd_small_data[0]
# (<PIL.Image.Image image mode=RGB size=256x256>, 0)

trainstd_small_data[1]
# (<PIL.Image.Image image mode=RGB size=256x256>, 0)

trainstd_small_data[2]
# (<PIL.Image.Image image mode=RGB size=256x256>, 0)

trainstd_small_data[5000]
# (<PIL.Image.Image image mode=RGB size=256x256>, 1)

trainstd_small_data[10000]
# (<PIL.Image.Image image mode=RGB size=256x256>, 2)

trainchal_large_data[0]
# (<PIL.Image.Image image mode=RGB size=683x512 at 0x156E22BB680>, 0)

trainchal_large_data[1]
# (<PIL.Image.Image image mode=RGB size=768x512 at 0x156DF8213D0>, 0)

trainchal_large_data[2]
# (<PIL.Image.Image image mode=RGB size=718x512 at 0x156DF8213D0>, 0)

trainchal_large_data[38567]
# (<PIL.Image.Image image mode=RGB size=512x683 at 0x156DF8213D0>, 1)

trainchal_large_data[47891]
# (<PIL.Image.Image image mode=RGB size=683x512 at 0x156DF8213D0>, 2)

trainchal_small_data[0]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2955B625CA0>, 0)

trainchal_small_data[1]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2950D2A8350>, 0)

trainchal_small_data[2]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2950D2A82C0>, 0)

trainchal_small_data[38567]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2955B3BF6B0>, 1)

trainchal_small_data[47891]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2955B3DD4F0>, 2)

val_large_data[0]
# (<PIL.Image.Image image mode=RGB size=512x772 at 0x295408DA750>, 165)

val_large_data[1]
# (<PIL.Image.Image image mode=RGB size=600x493 at 0x29561D468D0>, 358)

val_large_data[2]
# (<PIL.Image.Image image mode=RGB size=763x512 at 0x2955E09DD60>, 93)

val_large_data[3]
# (<PIL.Image.Image image mode=RGB size=827x512 at 0x29540938A70>, 164)

val_large_data[4]
# (<PIL.Image.Image image mode=RGB size=772x512 at 0x29562600650>, 289)

val_small_data[0]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2950D34C500>, 165)

val_small_data[1]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x29540892870>, 358)

val_small_data[2]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x2954085DBB0>, 93)

val_small_data[3]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x29561E348C0>, 164)

val_small_data[4]
# (<PIL.Image.Image image mode=RGB size=256x256 at 0x29560A415B0>, 289)

import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    plt.figure(figsize=(12, 6))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, j in enumerate(iterable=ims, start=1):
        plt.subplot(2, 5, i)
        im, lab = data[j]
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout(h_pad=3.0)
    plt.show()

trainstd_ims = (0, 1, 2, 5000, 10000, 15000, 20000, 25000, 30000, 35000)
trainchal_ims = (0, 1, 2, 38567, 47891, 74902, 98483, 137663, 150035, 161052)
val_ims = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

show_images(data=trainstd_large_data, ims=trainstd_ims,
            main_title="trainstd_large_data")
show_images(data=trainstd_small_data, ims=trainstd_ims,
            main_title="trainstd_small_data")
show_images(data=trainchal_large_data, ims=trainchal_ims,
            main_title="trainchal_large_data")
show_images(data=trainchal_small_data, ims=trainchal_ims,
            main_title="trainchal_small_data")
show_images(data=val_large_data, ims=val_ims,
            main_title="val_large_data")
show_images(data=val_small_data, ims=val_ims,
            main_title="val_small_data")
登录后复制

Places in PyTorch

Places in PyTorch

Places in PyTorch

Places in PyTorch

Places in PyTorch

Places in PyTorch

以上是PyTorch 中的位置的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1672
14
CakePHP 教程
1428
52
Laravel 教程
1332
25
PHP教程
1277
29
C# 教程
1257
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

科学计算的Python:详细的外观 科学计算的Python:详细的外观 Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Web开发的Python:关键应用程序 Web开发的Python:关键应用程序 Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

See all articles