如何有效地将多个 CSV 文件连接到单个 Pandas DataFrame 中并跟踪数据来源?
将多个 CSV 文件连接到一个 DataFrame
问题陈述
将多个 CSV 文件有效地组合成一个统一的 DataFrame,一个简洁可靠的解决方案被寻求。但是,在串联循环中遇到了障碍。
解决方案
要解决该问题并成功串联 CSV 文件,可以使用以下综合代码片段:
import os import pandas as pd from pathlib import Path path = r'C:\DRO\DCL_rawdata_files' all_files = Path(path).glob('*.csv') df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
此代码利用生成器表达式单独读取每个 CSV 文件,然后将它们连接到单个 DataFrame 中。 ignore_index 参数确保串联的 DataFrame 具有连续的行索引。
添加信息以识别数据来源
在某些情况下,向串联的 DataFrame 添加一列来指示源可能会有所帮助每行的文件。这可以使用以下方法之一来实现:
选项 1:添加文件名作为新列
dfs = [] for f in all_files: data = pd.read_csv(f) data['file'] = f.stem dfs.append(data) df = pd.concat(dfs, ignore_index=True)
选项 2:添加通用文件来源为新列
dfs = [] for i, f in enumerate(all_files): data = pd.read_csv(f) data['file'] = f'File {i}' dfs.append(data) df = pd.concat(dfs, ignore_index=True)
选项3:使用列表理解添加文件源
dfs = [pd.read_csv(f) for f in all_files] df = pd.concat(dfs, ignore_index=True) df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
选项 4:使用 .assign() 的单行解决方案
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in all_files), ignore_index=True)
通过实现一个在这些选项中,连接的 DataFrame 将使用信息进行注释以跟踪每行的来源。
以上是如何有效地将多个 CSV 文件连接到单个 Pandas DataFrame 中并跟踪数据来源?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
