pandas 的 DataFrame 选择的 `loc` 和 `iloc` 有什么区别?
iloc 和 loc 有什么不同?
在 Python 的 pandas 库中,loc 和 iloc 函数用于对 DataFrame 进行切片。虽然它们有一些相似之处,但它们的主要目的和基本机制存在显着差异。
loc 与 iloc:基于标签与基于位置的选择
loc基于标签进行操作,标签是与行或列关联的索引值。它通过将行(或列)的标签与指定的选择标准相匹配来检索行(或列)。例如,df.loc[:5] 将返回 DataFrame 的前五行,其中标签按升序排列。
iloc 另一方面,基于整数位置。它根据行(或列)在 DataFrame 中的位置来选择行(或列)。例如,df.iloc[:5] 也将返回前五行,但其选择是基于序数位置(从 0 开始的索引)。
说明区别的示例
考虑以下具有非单调索引的 DataFrame:
s = pd.Series(list("abcdef"), index=[49, 48, 47, 0, 1, 2])
使用 loc 和 iloc 检索前五个元素:
s.loc[:5] # row by row label (inclusive) s.iloc[:5] # row by row location (exclusive)
结果不同:
- s.loc[:5] 返回索引标签为 0 到 5(含)的行,结果是:
0 d 1 e 2 f
- s.iloc[:5] 返回位置 0 到 4 的行(独家),导致:
49 a 48 b 47 c 0 d 1 e
一般差异
总结 loc 和 iloc 之间的一般差异:
- loc:索引标签-based,按标签精确选择。
- iloc:基于整数位置,按标签选择位置。
- loc 可以处理非单调索引和越界标签,而 iloc 在这种情况下会引发错误。
- 在某些情况下,iloc 比 loc 执行得更快,尤其是当索引是数字且按顺序排列。
其他注意事项
需要注意的是iloc 也可以对 DataFrame 的列进行操作,但其语法保持不变。然而 loc 在选择列时可以使用轴标签,提供更大的灵活性。
更多信息,请参阅 pandas 文档中的[索引和切片](https://pandas.pydata.org/docs/ user_guide/indexing.html).
以上是pandas 的 DataFrame 选择的 `loc` 和 `iloc` 有什么区别?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
