如何将 Pandas 列表的列拆分为多列?
将 Pandas 列表列拆分为多个列
问题
考虑一个包含列表的列的 Pandas DataFrame:
import pandas as pd df = pd.DataFrame({"teams": [[["SF", "NYG"]] for _ in range(7)]}) teams 0 [[SF, NYG]] 1 [[SF, NYG]] 2 [[SF, NYG]] 3 [[SF, NYG]] 4 [[SF, NYG]] 5 [[SF, NYG]] 6 [[SF, NYG]]
要将此列转换为两个单独的列,请按照以下步骤操作步骤:
解决方案
- 使用 to_list() 创建值列表:
import pandas as pd d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'], ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]} df2 = pd.DataFrame(d1) print (df2) teams 0 [SF, NYG] 1 [SF, NYG] 2 [SF, NYG] 3 [SF, NYG] 4 [SF, NYG] 5 [SF, NYG] 6 [SF, NYG]
- 使用提取列分配:
分配一个具有所需列的新 DataFrame:
df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index) print (df2) teams team1 team2 0 [SF, NYG] SF NYG 1 [SF, NYG] SF NYG 2 [SF, NYG] SF NYG 3 [SF, NYG] SF NYG 4 [SF, NYG] SF NYG 5 [SF, NYG] SF NYG 6 [SF, NYG] SF NYG
- 为结果创建新 DataFrame:
或者,可以创建一个新的 DataFrame分别:
df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2']) print (df3) team1 team2 0 SF NYG 1 SF NYG 2 SF NYG 3 SF NYG 4 SF NYG 5 SF NYG 6 SF NYG
注意:使用 apply(pd.Series) 进行此操作可能比上述方法慢得多。
以上是如何将 Pandas 列表的列拆分为多列?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。
