如何利用Python的Requests模块高效下载图片?
使用 Python 中的 Requests 模块下载图像
为了使用 requests 模块从网络下载并保存图像,开发人员遇到困难。提供的代码最初可以工作,但是使用 requests 修改后的代码会导致错误。
该错误是由于使用了请求响应中的不正确属性而导致的。要使用请求成功检索图像,有两种选择:
使用response.raw文件对象
利用response.raw属性返回原始数据回复。解码压缩响应(例如,使用 GZIP 或 deflate)不会自动处理。要强制解压,请将decode_content 属性设置为True。随后,使用 Shutil.copyfileobj() 将数据流式传输到文件对象。
import requests import shutil r = requests.get(settings.STATICMAP_URL.format(**data), stream=True) if r.status_code == 200: with open(path, 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f)
迭代响应
另一种方法涉及迭代响应,确保数据解压缩。
r = requests.get(settings.STATICMAP_URL.format(**data), stream=True) if r.status_code == 200: with open(path, 'wb') as f: for chunk in r: f.write(chunk)
可以使用以下命令自定义块大小Response.iter_content() 方法。
r = requests.get(settings.STATICMAP_URL.format(**data), stream=True) if r.status_code == 200: with open(path, 'wb') as f: for chunk in r.iter_content(1024): f.write(chunk)
请记住以二进制模式打开目标文件以防止换行符转换并设置stream=True 以避免占用内存的完整下载。
以上是如何利用Python的Requests模块高效下载图片?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。
