如何使用 Pandas Groupby 将 DataFrame 行分组到列表中?
将 DataFrame 行分组为 Pandas GroupBy 中的列表
许多数据集包含跨行的冗余信息。为了提取有意义的见解,通常需要根据公共属性对行进行分组。这使得能够聚合和操作每个组内的数据。在本文中,我们将探讨如何在 Pandas groupby 中将数据帧行分组到列表中。
分组和聚合
考虑一个包含两列“a”和“b”的数据帧:
a b A 1 A 2 B 5 B 5 B 4 C 6
目标是按第一列('a')对行进行分组,并在第二列中创建值列表每组的列('b')。所需的输出是:
A [1,2] B [5,5,4] C [6]
为了实现这一点,我们可以使用 Pandas 的 groupby 和 apply 函数。 groupby 函数按指定列对行进行分组,而 apply 函数允许我们对每个组执行操作。在本例中,我们将应用列表函数为每个组创建一个值列表。
df.groupby('a')['b'].apply(list)
此代码将返回一个包含每个组的值列表的 Series 对象:
a A [1, 2] B [5, 5, 4] C [6] Name: b, dtype: object
创建一个新的数据框
要使用分组列表创建一个新的数据框,我们可以使用reset_index函数将Series对象转换为一个新的数据框并重命名包含列表的列:
df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
生成的数据框将如下所示:
a new 0 A [1, 2] 1 B [5, 5, 4] 2 C [6]
以上是如何使用 Pandas Groupby 将 DataFrame 行分组到列表中?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
