如何使用Boost在C中实现Python的Zip函数?
通过 Boost 增强型范围迭代在 C 11 中实现序列压缩
C 11 的关键增强功能之一是基于范围的 -循环,简化迭代语法:
for(auto x: Y) {}
这个与以前的语法相比是一个显着的改进:
for(std::vector<int>::iterator x=Y.begin(); x!=Y.end(); ++x) {}
问题出现了:这种简化的语法是否可以扩展到循环多个同时序列,类似于 Python 的 zip 函数?
Y1 = [1, 2, 3] Y2 = [4, 5, 6, 7] for x1,x2 in zip(Y1, Y2): print(x1, x2)
这段代码输出:
(1,4) (2,5) (3,6)
Boost 组合的解决方案函数
在 Boost 版本 1.56.0 及更高版本(2014)中,可以使用 boost::combine 函数:
#include <boost/range/combine.hpp> int main() { std::vector<int> a {4, 5, 6}; double b[] = {7, 8, 9}; std::list<std::string> c {"a", "b", "c"}; for (auto tup : boost::combine(a, b, c, a)) { // <--- int x, w; double y; std::string z; boost::tie(x, y, z, w) = tup; printf("%d %g %s %d\n", x, y, z.c_str(), w); } }
此代码打印:
4 7 a 4 5 8 b 5 6 9 c 6
具有自定义范围定义的解决方案(预升压1.56.0)
在早期的 Boost 版本中,需要定义自定义范围:
#include <boost/iterator/zip_iterator.hpp> #include <boost/range.hpp> template <typename... T> auto zip(T&&... containers) -> boost::iterator_range<boost::zip_iterator<decltype(boost::make_tuple(std::begin(containers)...))>> { auto zip_begin = boost::make_zip_iterator(boost::make_tuple(std::begin(containers)...)); auto zip_end = boost::make_zip_iterator(boost::make_tuple(std::end(containers)...)); return boost::make_iterator_range(zip_begin, zip_end); }
用法保持不变。
注意对于 Boost 的 Zip Iterator
请注意,Boost 的如果输入容器长度不同,1.63.0 (2016) 之前的 Boost 版本中的 zip_iterator 和 boost::combine 可能会导致未定义的行为或不正确的迭代。
以上是如何使用Boost在C中实现Python的Zip函数?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C 和XML的未来发展趋势分别为:1)C 将通过C 20和C 23标准引入模块、概念和协程等新特性,提升编程效率和安全性;2)XML将继续在数据交换和配置文件中占据重要地位,但会面临JSON和YAML的挑战,并朝着更简洁和易解析的方向发展,如XMLSchema1.1和XPath3.1的改进。

C 持续使用的理由包括其高性能、广泛应用和不断演进的特性。1)高效性能:通过直接操作内存和硬件,C 在系统编程和高性能计算中表现出色。2)广泛应用:在游戏开发、嵌入式系统等领域大放异彩。3)不断演进:自1983年发布以来,C 持续增加新特性,保持其竞争力。

C 多线程和并发编程的核心概念包括线程的创建与管理、同步与互斥、条件变量、线程池、异步编程、常见错误与调试技巧以及性能优化与最佳实践。1)创建线程使用std::thread类,示例展示了如何创建并等待线程完成。2)同步与互斥使用std::mutex和std::lock_guard保护共享资源,避免数据竞争。3)条件变量通过std::condition_variable实现线程间的通信和同步。4)线程池示例展示了如何使用ThreadPool类并行处理任务,提高效率。5)异步编程使用std::as

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C 通过第三方库(如TinyXML、Pugixml、Xerces-C )与XML交互。1)使用库解析XML文件,将其转换为C 可处理的数据结构。2)生成XML时,将C 数据结构转换为XML格式。3)在实际应用中,XML常用于配置文件和数据交换,提升开发效率。

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

现代C 设计模式利用C 11及以后的新特性实现,帮助构建更灵活、高效的软件。1)使用lambda表达式和std::function简化观察者模式。2)通过移动语义和完美转发优化性能。3)智能指针确保类型安全和资源管理。
