有没有更方便的方法在 C 中声明编译时字符串?
在 C 中方便地声明编译时字符串
在编译时创建和操作字符串可能是 C 中的一个有用工具。然而,当前声明编译时字符串的过程很麻烦,需要使用可变的字符序列。这就引出了一个问题:是否有更方便的方法来在 C 中声明编译时字符串?
现有方法及其局限性
理想情况下,我们希望声明编译时字符串的语法如下:
using str1 = sequence<"Hello, world!">;
或者,我们可以使用用户定义的文字:
constexpr auto str2 = "Hello, world!"_s;
但是,str2 的声明类型缺少 constexpr 构造函数,并且由于指向成员的指针复杂性,用户定义的文字方法不可行。此外,尝试使用 constexpr 函数来实现此目的会遇到数组或字符串参数不是 constexpr 类型的问题。
建议的解决方案和当前状态
虽然当前没有专门解决方便的编译时字符串声明问题的提案或语言功能,但 Scott Schurr 在 C Now 上提出了 str_const 实用程序2012。这个实用程序虽然需要 constexpr 功能,但提供了一个非常优雅的解决方案,如下所示:
int main() { constexpr str_const my_string = "Hello, world!"; static_assert(my_string.size() == 13); static_assert(my_string[4] == 'o'); constexpr str_const my_other_string = my_string; static_assert(my_string == my_other_string); constexpr str_const world(my_string.substr(7, 5)); static_assert(world == "world"); // constexpr char x = world[5]; // Does not compile because index is out of range! }
C 17 更新
随着 std 的引入: :C 17 中的 string_view,可以使用 str_const 的更好替代方案。上面的代码可以重写如下:
#include <string_view> int main() { constexpr std::string_view my_string = "Hello, world!"; static_assert(my_string.size() == 13); static_assert(my_string[4] == 'o'); constexpr std::string_view my_other_string = my_string; static_assert(my_string == my_other_string); constexpr std::string_view world(my_string.substr(7, 5)); static_assert(world == "world"); // constexpr char x = world.at(5); // Does not compile because index is out of range! }
这种方法提供了编译时字符串操作功能和超出范围的检查。
以上是有没有更方便的方法在 C 中声明编译时字符串?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C 适合系统编程和硬件交互,因为它提供了接近硬件的控制能力和面向对象编程的强大特性。1)C 通过指针、内存管理和位操作等低级特性,实现高效的系统级操作。2)硬件交互通过设备驱动程序实现,C 可以编写这些驱动程序,处理与硬件设备的通信。

C 和XML的未来发展趋势分别为:1)C 将通过C 20和C 23标准引入模块、概念和协程等新特性,提升编程效率和安全性;2)XML将继续在数据交换和配置文件中占据重要地位,但会面临JSON和YAML的挑战,并朝着更简洁和易解析的方向发展,如XMLSchema1.1和XPath3.1的改进。

C 持续使用的理由包括其高性能、广泛应用和不断演进的特性。1)高效性能:通过直接操作内存和硬件,C 在系统编程和高性能计算中表现出色。2)广泛应用:在游戏开发、嵌入式系统等领域大放异彩。3)不断演进:自1983年发布以来,C 持续增加新特性,保持其竞争力。

C 多线程和并发编程的核心概念包括线程的创建与管理、同步与互斥、条件变量、线程池、异步编程、常见错误与调试技巧以及性能优化与最佳实践。1)创建线程使用std::thread类,示例展示了如何创建并等待线程完成。2)同步与互斥使用std::mutex和std::lock_guard保护共享资源,避免数据竞争。3)条件变量通过std::condition_variable实现线程间的通信和同步。4)线程池示例展示了如何使用ThreadPool类并行处理任务,提高效率。5)异步编程使用std::as

C 通过第三方库(如TinyXML、Pugixml、Xerces-C )与XML交互。1)使用库解析XML文件,将其转换为C 可处理的数据结构。2)生成XML时,将C 数据结构转换为XML格式。3)在实际应用中,XML常用于配置文件和数据交换,提升开发效率。

C 的内存管理、指针和模板是核心特性。1.内存管理通过new和delete手动分配和释放内存,需注意堆和栈的区别。2.指针允许直接操作内存地址,使用需谨慎,智能指针可简化管理。3.模板实现泛型编程,提高代码重用性和灵活性,需理解类型推导和特化。

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业
