首页 后端开发 Python教程 构建简单的生成式人工智能聊天机器人:实用指南

构建简单的生成式人工智能聊天机器人:实用指南

Dec 11, 2024 pm 01:12 PM

Building a Simple Generative AI Chatbot: A Practical Guide

在本教程中,我们将逐步使用 Python 和 OpenAI API 创建生成式 AI 聊天机器人。我们将构建一个聊天机器人,它可以进行自然对话,同时保持上下文并提供有用的响应。

先决条件

  • Python 3.8
  • Python 编程的基本了解
  • OpenAI API 密钥
  • RESTful API 基础知识

设置环境

首先,让我们设置我们的开发环境。创建一个新的Python项目并安装所需的依赖项:

pip install openai python-dotenv streamlit
登录后复制

项目结构

我们的聊天机器人将具有干净的模块化结构:

chatbot/
├── .env
├── app.py
├── chat_handler.py
└── requirements.txt
登录后复制

执行

让我们从 chat_handler.py 中的核心聊天机器人逻辑开始:

import openai
from typing import List, Dict
import os
from dotenv import load_dotenv

load_dotenv()

class ChatBot:
    def __init__(self):
        openai.api_key = os.getenv("OPENAI_API_KEY")
        self.conversation_history: List[Dict[str, str]] = []
        self.system_prompt = """You are a helpful AI assistant. Provide clear, 
        accurate, and engaging responses while maintaining a friendly tone."""

    def add_message(self, role: str, content: str):
        self.conversation_history.append({"role": role, "content": content})

    def get_response(self, user_input: str) -> str:
        # Add user input to conversation history
        self.add_message("user", user_input)

        # Prepare messages for API call
        messages = [{"role": "system", "content": self.system_prompt}] + \
                  self.conversation_history

        try:
            # Make API call to OpenAI
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=messages,
                max_tokens=1000,
                temperature=0.7
            )

            # Extract and store assistant's response
            assistant_response = response.choices[0].message.content
            self.add_message("assistant", assistant_response)

            return assistant_response

        except Exception as e:
            return f"An error occurred: {str(e)}"
登录后复制

现在,让我们在 app.py 中使用 Streamlit 创建一个简单的 Web 界面:

import streamlit as st
from chat_handler import ChatBot

def main():
    st.title("? AI Chatbot")

    # Initialize session state
    if "chatbot" not in st.session_state:
        st.session_state.chatbot = ChatBot()

    # Chat interface
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # Chat input
    if prompt := st.chat_input("What's on your mind?"):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)

        # Get bot response
        response = st.session_state.chatbot.get_response(prompt)

        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})
        with st.chat_message("assistant"):
            st.write(response)

if __name__ == "__main__":
    main()
登录后复制

主要特点

  1. 对话记忆:聊天机器人通过存储对话历史记录来维护上下文。
  2. 系统提示:我们通过系统提示定义聊天机器人的行为和个性。
  3. 错误处理:实现包括 API 调用的基本错误处理。
  4. 用户界面:使用 Streamlit 的干净、直观的 Web 界面。

运行聊天机器人

  1. 使用您的 OpenAI API 密钥创建 .env 文件:
OPENAI_API_KEY=your_api_key_here
登录后复制
  1. 运行应用程序:
streamlit run app.py
登录后复制

潜在的增强功能

  1. 对话持久化:添加数据库集成来存储聊天历史记录。
  2. 自定义个性:允许用户选择不同的聊天机器人个性。
  3. 输入验证:添加更强大的输入验证和清理。
  4. API 速率限制:实施速率限制来管理 API 使用。
  5. 响应流:添加流式响应以获得更好的用户体验。

结论

此实现演示了一个基本但实用的生成式 AI 聊天机器人。模块化设计可以根据特定需求轻松扩展和定制。虽然此示例使用 OpenAI 的 API,但相同的原理也可以应用于其他语言模型或 API。

请记住,部署聊天机器人时,您应该考虑:

  • API 成本和使用限制
  • 用户数据隐私和安全
  • 响应延迟和优化
  • 输入验证和内容审核

资源

  • OpenAI API 文档
  • 精简文档
  • Python 环境管理

以上是构建简单的生成式人工智能聊天机器人:实用指南的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何解决Linux终端中查看Python版本时遇到的权限问题? 如何解决Linux终端中查看Python版本时遇到的权限问题? Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? 如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到? Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? 在Python中如何高效地将一个DataFrame的整列复制到另一个结构不同的DataFrame中? Apr 01, 2025 pm 11:15 PM

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? 如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础? Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Uvicorn是如何在没有serve_forever()的情况下持续监听HTTP请求的? Apr 01, 2025 pm 10:51 PM

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

在Linux终端中使用python --version命令时如何解决权限问题? 在Linux终端中使用python --version命令时如何解决权限问题? Apr 02, 2025 am 06:36 AM

Linux终端中使用python...

如何绕过Investing.com的反爬虫机制获取新闻数据? 如何绕过Investing.com的反爬虫机制获取新闻数据? Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...

See all articles