首页 后端开发 Python教程 ChatsAPI — 世界上最快的人工智能代理框架

ChatsAPI — 世界上最快的人工智能代理框架

Dec 11, 2024 am 11:26 AM

GitHub: https://github.com/chatsapi/ChatsAPI
图书馆: https://pypi.org/project/chatsapi/

人工智能已经改变了各行各业,但有效部署人工智能仍然是一项艰巨的挑战。复杂的框架、缓慢的响应时间和陡峭的学习曲线给企业和开发人员带来了障碍。 ChatsAPI 是一个突破性的高性能 AI 代理框架,旨在提供无与伦比的速度、灵活性和简单性。

在本文中,我们将揭示 ChatsAPI 的独特之处、为何它能够改变游戏规则,以及它如何帮助开发人员以无与伦比的轻松性和效率构建智能系统。

ChatsAPI 有何独特之处?

ChatsAPI 不仅仅是另一个人工智能框架;这是人工智能驱动交互的一场革命。原因如下:

  • 无与伦比的性能 ChatsAPI 利用 SBERT 嵌入、HNSWlib 和 BM25 混合搜索来提供有史以来最快的查询匹配系统。

速度:ChatsAPI 的响应时间为亚毫秒级,是世界上最快的人工智能代理框架。其 HNSWlib 支持的搜索可确保快速检索路线和知识,即使对于大型数据集也是如此。

效率:SBERT 和 BM25 的混合方法将语义理解与传统排名系统结合起来,保证速度和准确性。

  • 与法学硕士无缝集成
    ChatsAPI 支持最先进的大型语言模型 (LLM),例如 OpenAI、Gemini、LlamaAPI 和 Ollama。它简化了将法学硕士集成到您的应用程序中的复杂性,使您能够专注于构建更好的体验。

  • 动态路由匹配
    ChatsAPI 使用自然语言理解 (NLU) 以无与伦比的精度将用户查询与预定义路由动态匹配。

使用 @trigger 等装饰器轻松注册路线。

使用 @extract 进行参数提取来简化输入处理,无论您的用例有多复杂。

  • 设计简单 我们相信强大和简单可以共存。借助 ChatsAPI,开发人员可以在几分钟内构建强大的人工智能驱动系统。无需再为复杂的设置或配置而苦恼。

ChatsAPI的优点

高性能查询处理
传统的人工智能系统要么在速度上要么在准确性上苦苦挣扎,而 ChatsAPI 却同时满足了这两点。无论是在庞大的知识库中寻找最佳匹配,还是处理大量查询,ChatsAPI 都表现出色。

灵活的框架
ChatsAPI 适应任何用例,无论您正在构建:

  • 客户支持聊天机器人。
  • 智能搜索系统。
  • 人工智能驱动的电子商务、医疗保健或教育助手。

为开发者打造

由开发者设计,为开发者服务,ChatsAPI 提供:

  • 快速入门:只需几个步骤即可设置环境、定义路线并上线。
  • 定制:使用装饰器定制行为并根据您的特定需求微调性能。
  • 轻松的 LLM 集成:轻松在 OpenAI 或 Gemini 等受支持的 LLM 之间切换。

ChatsAPI 如何工作?

ChatsAPI 的核心是通过三个步骤进行操作:

  1. 注册路由:使用@trigger装饰器定义路由并将它们与您的函数关联。
  2. 搜索和匹配:ChatsAPI 使用 SBERT 嵌入和 BM25 混合搜索将用户输入与正确的路线动态匹配。
  3. 提取参数:通过@extract装饰器,ChatsAPI自动提取并验证参数,更容易处理复杂的输入。

结果呢?一个快速、准确且易于使用的系统。

使用案例

  • 客户支持
    通过极快的查询解析来自动化客户交互。 ChatsAPI 确保用户立即获得相关答案,提高满意度并降低运营成本。

  • 知识库搜索
    使用户能够通过语义理解搜索大量知识库。混合 SBERT-BM25 方法可确保准确、上下文感知的结果。

  • 对话式人工智能
    构建能够实时理解并适应用户输入的对话式人工智能代理。 ChatsAPI 与顶级法学硕士无缝集成,提供自然、引人入胜的对话。

为什么你应该关心?

其他框架承诺灵活性或性能 - 但没有一个框架能够像 ChatsAPI 一样同时提供这两者。我们创建了一个框架:

  • 比市场上任何其他产品都快
  • 更简单设置和使用。
  • 更智能,其独特的混合搜索引擎融合了语义和基于关键字的方法。

ChatsAPI 使开发人员能够释放人工智能的全部潜力,而无需担心复杂性或性能缓慢的问题。

如何开始

ChatsAPI 入门很简单:

  • 安装框架:
pip install chatsapi
登录后复制
  • 定义您的路线:
from chatsapi import ChatsAPI  

chat = ChatsAPI()  

@chat.trigger("Hello")  
async def greet(input_text):  
    return "Hi there!"
登录后复制
  • 从消息中提取一些数据
from chatsapi import ChatsAPI  

chat = ChatsAPI()  

@chat.trigger("Need help with account settings.")
@chat.extract([
    ("account_number", "Account number (a nine digit number)", int, None),
    ("holder_name", "Account holder's name (a person name)", str, None)
])
async def account_help(chat_message: str, extracted: dict):
    return {"message": chat_message, "extracted": extracted}
Run your message (with no LLM)
@app.post("/chat")
async def message(request: RequestModel, response: Response):
    reply = await chat.run(request.message)
    return {"message": reply}
登录后复制
  • 对话(与法学硕士)——完整示例
import os
from dotenv import load_dotenv
from fastapi import FastAPI, Request, Response
from pydantic import BaseModel
from chatsapi.chatsapi import ChatsAPI

# Load environment variables from .env file
load_dotenv()

app = FastAPI()                 # instantiate FastAPI or your web framework
chat = ChatsAPI(                # instantiate ChatsAPI
    llm_type="gemini",
    llm_model="models/gemini-pro",
    llm_api_key=os.getenv("GOOGLE_API_KEY"),
)

# chat trigger - 1
@chat.trigger("Want to cancel a credit card.")
@chat.extract([("card_number", "Credit card number (a 12 digit number)", str, None)])
async def cancel_credit_card(chat_message: str, extracted: dict):
    return {"message": chat_message, "extracted": extracted}

# chat trigger - 2
@chat.trigger("Need help with account settings.")
@chat.extract([
    ("account_number", "Account number (a nine digit number)", int, None),
    ("holder_name", "Account holder's name (a person name)", str, None)
])
async def account_help(chat_message: str, extracted: dict):
    return {"message": chat_message, "extracted": extracted}

# request model
class RequestModel(BaseModel):
    message: str

# chat conversation
@app.post("/chat")
async def message(request: RequestModel, response: Response, http_request: Request):
    session_id = http_request.cookies.get("session_id")
    reply = await chat.conversation(request.message, session_id)

    return {"message": f"{reply}"}

# set chat session
@app.post("/set-session")
def set_session(response: Response):
    session_id = chat.set_session()
    response.set_cookie(key="session_id", value=session_id)
    return {"message": "Session set"}

# end chat session
@app.post("/end-session")
def end_session(response: Response, http_request: Request):
    session_id = http_request.cookies.get("session_id")
    chat.end_session(session_id)
    response.delete_cookie("session_id")
    return {"message": "Session ended"}
登录后复制
  • 遵循 LLM 查询的路由 — 单个查询
await chat.query(request.message)
登录后复制

基准测试

基于传统 LLM (API) 的方法通常每个请求需要大约四秒的时间。相比之下,ChatsAPI 可以在一秒内处理请求,通常在几毫秒内,无需进行任何 LLM API 调用。

472ms内执行聊天路由任务(无缓存)
ChatsAPI — The World’s Fastest AI Agent Framework

21ms内执行聊天路由任务(缓存后)
ChatsAPI — The World’s Fastest AI Agent Framework

862ms内执行聊天路由数据提取任务(无缓存)
ChatsAPI — The World’s Fastest AI Agent Framework

使用 WhatsApp Cloud API 展示其对话能力
ChatsAPI — The World’s Fastest AI Agent Framework

ChatsAPI — 功能层次结构
ChatsAPI — The World’s Fastest AI Agent Framework

ChatsAPI 不仅仅是一个框架;这是我们构建人工智能系统并与之交互的方式的范式转变。通过结合速度、准确性和易用性,ChatsAPI 为 AI 代理框架树立了新基准。

立即加入这场革命,了解 ChatsAPI 为何正在改变 AI 格局。

准备好潜水了吗?立即开始使用 ChatsAPI,体验 AI 开发的未来。

以上是ChatsAPI — 世界上最快的人工智能代理框架的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1664
14
CakePHP 教程
1423
52
Laravel 教程
1318
25
PHP教程
1269
29
C# 教程
1248
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

See all articles